• 제목/요약/키워드: motion accuracy measurement

Search Result 192, Processing Time 0.026 seconds

An Introduction of Myo Armband and Its Comparison with Motion Capture Systems

  • Cho, Junghun;Lee, Jang Hyung;Kim, Kwang Gi
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.115-120
    • /
    • 2018
  • Recently, ways for accurately measuring the three dimensional movements of hand are actively researched so as to utilize the measurement data for therapeutic and rehabilitation programs. This research paper aims to introduce a product called Myo Armband, a wearable device comprised of a 3-axis accelerometer, a 3 axis gyroscope, and electromyographic sensors. We compare Armband's performance with that of the Motion Capture System, which is known as a device for providing fairly accurate measurements for angular movements of objects. Dart throwing and wrist winding motions comprised movement scenarios. This paper also discusses one of Armband's advantages - portability, and suggests its potential as a substitute for previously used devices. Decent levels of measurement accuracy were obtained which were comparable to that of three dimensional measurement device.

Multi-Attitude Heading Reference System-based Motion-Tracking and Localization of a Person/Walking Robot (다중 자세방위기준장치 기반 사람/보행로봇의 동작추적 및 위치추정)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • An Inertial Measurement Unit (IMU)-based Attitude and Heading Reference System (AHRS) can calculate attitude and heading information with long-term accuracy and stability by combining gyro, accelerometer, and magnetic compass signals. Motivated by this characteristic of the AHRS, this paper presents a Motion-Tracking and Localization (MTL) method for a person or walking robot using multi-AHRSs. Five AHRSs are attached to the two calves, two thighs, and waist of a person/walking robot. Joints, links, and coordinate frames are defined on the body. The outputs of the AHRSs are integrated with link data. In addition, a supporting foot is distinguished from a moving foot. With this information, the locations of the joints on the local coordinate frame are calculated. The experimental results show that the presented MTL method can track the motion of and localize a person/walking robot with long-term accuracy in an infra-less environment.

Retrieval of Remotely Sensed Fluid Velocity and Esimation of Its Accuracy by Eulerian Measurement (오일러 방법으로 원격 측정된 유체운동의 속도 산출과 정확도 평가)

  • Kim, Min-Seong;Lee, Kyung Hun;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.151-156
    • /
    • 2021
  • The speed and direction of the earth's fluid motion is measured by a remote sensing method using electromagnetic waves. Using UHF radar and GPS Sonde, the vertical profile of fluid velocity was calculated by the Euler measurement method and the Lagrange measurement method, respectively. Since the wind direction, which is the direction of motion of the atmosphere, is indicated in the direction of the wind blowing, and a circular value of 0° - 360° is used, it is necessary to pay attention to statistical analysis. Errors caused by calculation conditions are provided, and the corrected accuracy of comparison results is improved by 400%.

Development and Evaluation of High Speed weigh-in-motion system (고속축하중측정시스템의 개발과 평가)

  • Kim, Ju-Hyun
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-26
    • /
    • 2010
  • Maintenance of the roads and bridges is a major issue for all road administrators around the world, and various initiatives are being implemented in each region for the purpose of controlling the ever increasing road maintenance cost while ensuring the safety of the vehicles driving. Efforts for such initiatives have also been made in Asia and initiatives for managing heavy-weight vehicles have recently gained momentum in Korea and Japan. We have developed a technology for unevenly installing bar-shaped sensors (piezo quartz sensors) to enable dynamic axle load measurement at a highly accurate level, and have estimated our measurement accuracy of axle load/gross weight, etc. on an actual road. The measurement accuracy of the axle load/gross weight varies significantly depending on the number of sensors installed. In our implementation, the target accuracy was set to below ${\pm}5%$ for gross weight measurement so that automatic regulation can be applied. We have achieved our target by installing 8-point measurement system. However, to have this technology widely accepted, it was necessary to reduce the system size so that it can be easily implemented. Therefore, we have estimated the relationship between the measurement accuracy and the system size (number of measurement points), and have come up with the proposal of 3-point measurement as an optimum number of measurement points, and have estimated its performance on an actual road. Additionally, we evaluated the relationship between the measurement accuracy and vehicle velocity.

Development of the Measuring System of the Rotational Accuracy of main Spindles (주축의 회전정도 측정시스템의 개발)

  • Sin, Yeong-Jae;Park, Jong-Gwon;Lee, Hu-Sang
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.21-26
    • /
    • 1990
  • In order to satisfy the industrial requirements to measure the rotational error motion of main spindles and to find out the source of the error motion, some measuring systems were made. Their measuring principle are based on the 3-point roundness measurement. In these measuring systems, the measurements are processed by digital calculation technique and the form error and the rotational error motion of main spindles are spearated. In the present paper, the principle of 3-point metnod is introduced and some application examples are shown.

  • PDF

A study on the Error Separation Method in Rotation Accuracy Measurement of High Precision Spindle Unit (고정밀 스핀들의 회전정밀도 측정 오차 분리법에 관한 연구)

  • Kim, Sang-Hwa;Kim, Byung-Ha;Jin, Yong-Gyoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.78-84
    • /
    • 2014
  • The rotation of a spindle unit must be accurate for high-quality machining and to improve the quality of the machine tools.Therefore, the proper measurement of the rotation accuracy and ensuring a proper analysis are very important. Separate processes are necessary because spindle errors and roundness errors associated with the test balls can both factor into the measured rotation error values. We used three methods to discern test ball errors and analyzed which could be deemed as the most proper technique in a test of the rotation accuracy of the main spindle of a machine tool.

Mixed-reality simulation for orthognathic surgery

  • Fushima, Kenji;Kobayashi, Masaru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.13.1-13.12
    • /
    • 2016
  • Background: Mandibular motion tracking system (ManMoS) has been developed for orthognathic surgery. This article aimed to introduce the ManMoS and to examine the accuracy of this system. Methods: Skeletal and dental models are reconstructed in a virtual space from the DICOM data of three-dimensional computed tomography (3D-CT) recording and the STL data of 3D scanning, respectively. The ManMoS uniquely integrates the virtual dento-skeletal model with the real motion of the dental cast mounted on the simulator, using the reference splint. Positional change of the dental cast is tracked by using the 3D motion tracking equipment and reflects on the jaw position of the virtual model in real time, generating the mixed-reality surgical simulation. ManMoS was applied for two clinical cases having a facial asymmetry. In order to assess the accuracy of the ManMoS, the positional change of the lower dental arch was compared between the virtual and real models. Results: With the measurement data of the real lower dental cast as a reference, measurement error for the whole simulation system was less than 0.32 mm. In ManMoS, the skeletal and dental asymmetries were adequately diagnosed in three dimensions. Jaw repositioning was simulated with priority given to the skeletal correction rather than the occlusal correction. In two cases, facial asymmetry was successfully improved while a normal occlusal relationship was reconstructed. Positional change measured in the virtual model did not differ significantly from that in the real model. Conclusions: It was suggested that the accuracy of the ManMoS was good enough for a clinical use. This surgical simulation system appears to meet clinical demands well and is an important facilitator of communication between orthodontists and surgeons.

Accuracy and Consistency of Three-Dimensional Motion Analysis System (3차원 동작분석 시스템의 정밀도와 측정 일관성)

  • Park, Young-Hoon;Youm, Chang-Hong;Seo, Kook-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • Computer-assisted motional analysis is a popular method in biomechanical studies. Validation of the specific system and its measurement are fundamental to its application in the areas. Because the accuracy and consistency of a particular system provide the researchers with critical information to assist in making judgements regarding the degree to which inferences can be drawn from measurement data. The purpose of this study was to assess the accuracy and consistency of the Kwon3D motion analysis system. Validation parameters were five lengths from eight landmarkers in combination with the DLT reconstruction error values, digitizing monitor resolutions, and numbers of control points. With the best setting, Kwon3D's estimations of 260cm, 200cm, 140cm, 100cm, and 20cm were $260.33{\pm}.688cm$, $199.98{\pm}.625cm$, $139.89{\pm}.537cm$, $99.75{\pm}.466cm$, $20.08{\pm}.114$, respectively. There was no significant DLT error value difference between two monitor resolutions, but 0.27cm significant difference in 260cm estimation. There were significant differences in 260cm and 200cm estimations between with 33-control-point DLT error and with 17-control-point DLT error, but no in 140cm, 100cm, and 20cm estimations. Test-retest results showed that Kwon3D measurements were highly consistent with reliability coefficients alpha of .9263 and above.

Measurement Method for Fine 6-DOF Displacement of Rigid Bodies (강체의 6자유도 미소 변위 측정)

  • Park, Won-Shik;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.208-219
    • /
    • 2002
  • A novel measurement method to obtain the 6-DOF motions of arbitrary rigid bodies is proposed in this paper. The method adopts a specially fabricated mirror called 3-facet mirror, which looks like a triangular pyramid haying an equilateral cross-sectional shape. The mirror is mounted on the objects to be measured, illuminated by a laser beam having circular profile, and reflects the laser beam in three different directions. Three PSDs(position sensitive detector) detect the three beams reflected by the mirror, respectively. From the signals of the PSDs, we can calculate the 3-dimensional position and orientation of the 3-facet mirror, and thus enabling us to determine the 3-dimensional position and orientation of the objects. In this paper, we model the relationship between the 3-dimensional position and orientation of an object in motion and the outputs of three PSDs. A series of experiments are performed to demonstrate the effectiveness and accuracy of the proposed method. The experimental results show that the proposed sensing system can be an effective means of obtaining 3-dimensional position and orientation of arbitrary objects and provide resonable measurement accuracy.

Dynamic and static structural displacement measurement using backscattering DC coupled radar

  • Guan, Shanyue;Rice, Jennifer A.;Li, Changzhi;Li, Yiran;Wang, Guochao
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.521-535
    • /
    • 2015
  • Vibration-based monitoring is one approach used to perform structural condition assessment. By measuring structural response, such as displacement, dynamic characteristics of a structure may be estimated. Often, the primary dynamic responses in civil structures are below 5 Hz, making accurate low frequency measurement critical for successful dynamic characterization. In addition, static deflection measurements are useful for structural capacity and load rating assessments. This paper presents a DC coupled continuous wave radar to accurately detect both dynamic and static displacement. This low-cost radar sensor provides displacement measurements within a compact, wireless unit appropriate for a range of structural monitoring applications. The hardware components and operating mechanism of the radar are introduced and a series of laboratory experiments are presented to assess the performance characteristics of the radar. The laboratory and field experiments investigate the effect of factors such as target distance, motion amplitude, and motion frequency on the radar's measurement accuracy. The results demonstrate that the radar is capable of both static and dynamic displacement measurements with sub-millimeter accuracy, making it a promising technology for structural health monitoring.