• Title/Summary/Keyword: mortars

Search Result 434, Processing Time 0.025 seconds

A Study on the Absorption Phenomena of Ultrasonic Exergy in the Mortar with different Mixing Ratio of Sand to Cement (배합률의 변화에 의한 MORTAR의 초음파 흡수현상)

  • 전춘생;홍봉식
    • 전기의세계
    • /
    • v.25 no.6
    • /
    • pp.74-80
    • /
    • 1976
  • The temperature rise of the mortars while are being irradiated by ultrasonic waves and immersed in a liquid medium, are measured. The mixing ratios of sand to cement are varied for the different mortars. The results of the experiment are as follows, 1. The temperature rise of the mortar is decreased as themixing ration (S/C) is increased. 2. Thd temperature rise of the specimen is increased as its length is increased. 3. The surface conditions, either smooth or rough, may not have much influence on the temperature rise of the mortar. 4. The initial slope of temperature rise may not have much effect of the viscosity of liquid. The results, describes above, appear well coincide with the theory that the temperature rise is attributed mainly to the absorption heating. Since the absorption heating of the mortars varies with the mixing ratios of sand to cement, the strength of them would be estimated by means of irradiation of ultrasonic waves on the specimen.

  • PDF

Flow and Engineering Properties of Fiber Reinforced Hwangtoh Mortars

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Hwang, Hye-Zoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.332-339
    • /
    • 2012
  • In this study, six mortar mixes were tested in order to examine the significance and limitations of hydrophilic fiber in terms of its capacity to enhance the tensile resistance of Hwangtoh mortar. Lyocell, polyamide and polyvinyl alcohol (PVA) fibers were selected for the main test parameters. The tensile capacity of mortars tested was evaluated based on the splitting tensile strength and the modulus of fracture, while their ductility was examined using the toughness indices specified in ASTM. Test results showed that the addition of lyocell and PVA fibers had little influence on the flow of the Hwangtoh mortars. To enhance the tensile capacity and toughness index of Hwangtoh mortar, it is proposed that fiber spacing above 0.0003 is required, regardless of the type of fiber.

Self-Corrosion Protection of Polymer Cementitious Materials Using Terpolymer Powders with a Nitrite-type Hydrocalumite (아질산형 hydrocalumite와 터폴리머 분말수지를 병용한 폴리머 시멘트계 재료의 자기방청기능)

  • Hong, Sun-Hee;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.73-76
    • /
    • 2010
  • This study deals with the properties of polymer-modified mortars with a nitrite-type hydrocalumite, which are effectively used as intelligent patch materials for deteriorated reinforced concrete structures. The calumite is a material that can adsorb the chloride ions (Cl-) causing the corrosion of reinforcing bars and liberate the nitrite ions (NO2-) inhibiting the corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. Polymer-modified mortars using hydrocalumite and terpolymer powders are prepared with various calumite contents and polymer-binder ratios, and tested for corrosion inhibition. Subsequently, regardless of the polymer-binder ratio, the replacement of ordinary portland cement with the calumite has a marked effect on the corrosion-inhibiting property of the polymer-modified mortars.

  • PDF

A Basic Study on the Self-Corrosion Inhibition Function Identification of VA/E/MMA-Modified Mortar with Nitrite-Type Hydrocalumite (칼루마이트 및 VA/E/MMA 분말수지 병용 PMM의 자기방청기능 규명을 위한 기초적 연구)

  • Hong, Sun-Hee;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.253-254
    • /
    • 2011
  • The purpose of this study is to investigate chloride ion adsoption property of cement mortar using nitrite type hydrocalumite(calumite) with self-corrosion inhibition function. Superior corrosion inhibition function of the VA/E/MMA-modified mortars with calumite was ascertained from accelerated corrosion test in the previous study. In this study, VA/E/MMA-modified mortars with calumite were prepared with calumite contents of 0, 5, 10% and polymer-binder ratio of 0, 10%, and tested for chloride ion adsorption to make it clear how calumite gives self-corrosion inhibition function to cement mortar. As a result, chloride ion adsorption property of VA/E/MMA-modified mortars with calumite was improved by increasing calumite contents compared to unmodified mortar regardless of using VA/E/MMA terpolymer powder or not.

  • PDF

Effect of elevated temperature on physico-mechanical properties of metakaolin blended cement mortar

  • Morsy, M.S.;Rashad, A.M.;El-Nouhy, H.A.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • An experimental investigation was conducted to evaluate the performance of mortars with and without Metakaolin (MK) exposed to elevated temperatures $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$ for two hours. The binder to sand ratio was kept constant (1:5.23). The ordinary Portland cement (OPC) was replaced with MK at 0%, 5%, 10% 20% and 30%. All mixtures were designed to have a flow of $94{\pm}5%$. The compressive strength of mortars before and after exposure to elevated temperature was determined. The formation of various decomposition phases were identified using X-ray diffractometry (XRD) and differential thermal analysis (DTA). The microstructure of the mortars was examined using scanning electron microscope (SEM). Test results indicated that MK improves the compressive strength before and after exposure to elevated temperature and that the 20% cement replacement of MK is the optimum percentage.

A Study on the Adhesion of Concrete Pipe Lining Using Polymer Mortar (폴리머 모르타르를 이용한 콘크리트관 라이닝의 접착에 관한 연구)

  • 정학용;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.357-362
    • /
    • 1997
  • The purpose of this study is to evaluate the adhesion of concrete pipe lining using polymer mortar. The polymer mortars with various mix proportions are prepared, and tested for flexural and compressive strengths, adhesion in tension, and the aspects of lining surface and workability are evaluated. Form the test results, it is apparent that the appropriate polymer mortars of lining to concrete pipe can be produced. The flexural and compressive strengths of polymer mortar for lining are affected by type of resin, and aggregates content, and water content at the surface of concrete pipe is important factor for improvement in adhesion of polymer mortar. It is obvious that the economical polymer mortars having an excellent cost performance ration can be produced through this study.

  • PDF

Evaluation on Sulfate Attack Resistance of Cement Matrix (시멘트 경화체의 황산염침식 저항성 평가)

  • 문한영;김홍삼;이승태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.141-151
    • /
    • 2000
  • Compressive strength, sulfate deterioration factor(SDF) and length change of 5 types of mortars immersed in sodium sulfate solution were observed. As the results of tests, it was found that the sulfate resistance of blended cement mortars were superior to that of portland cement mortars. Pore volume with diameter larger than 0.1 $\mu\textrm{m}$ of 5 types of pastes indicated that the micro-structures of blended cement pastes were denser, due to pozzolan reaction and latent hydraulic properties, than those of portland cement pastes. The XRD, ESEM, EDS and TG analyses demonstrated that the reactants such as ettringite and gypsum were significantly formed in portland cement pastes. Besides, compared with the $Ca(OH)_2$ content of ordinary portland cement pastes immersed in water and sodium sulfate solution, the $Ca(OH)_2$ contents of fly ash blended cement and ground granulated blast-furnace slag cement paste were about 58% and 28% in water, and 55% and 20% in sodium sulfate solution, respectively.

An experimental study on strength of hybrid mortar synthesis with epoxy resin, fly ash and quarry dust under mild condition

  • Sudheer, P.;Muni Reddy, M.G.;Adiseshu, S.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.171-179
    • /
    • 2016
  • Fusion and characterization of bisphenol-A diglycidyl ether based thermosetting polymer mortars containing an epoxy resin, Fly ash and Rock sand are presented here for the Experimental study. The specimens have been prepared by means of an innovative process, in mild conditions, of commercial epoxy resin, Fly ash and Rock sand based paste. In this way, thermosetting based hybrid mortars characterized by a different content of normalized Fly ash and Rock sand by a homogeneous dispersion of the resin have been obtained. Once hardened, these new composite materials show improved compressive strength and toughness in respect to both the Fly ash and the Rock sand pastes since the Resin provides a more cohesive microstructure, with a reduced amount of micro cracks. The micro structural characterization allows pointing out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars. A correlation between micro-structural features and mechanical properties of the mortar has also been studied.

Adhesion in Tension of Polymer-Modified Mortars according to Curing Conditions (양생조건에 따른 폴리머 시멘트 모르타르의 인장접착강도)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.200-201
    • /
    • 2018
  • The purpose of this study is to evaluate the adhesion in tension of polymer-modified mortars according to curing conditions. From the test results, the adhesion in tension is seriously affected by type of curing conditions compared with type of polymer dispersions or polymer-cement ratios. The maximum adhesion in tension of EVA-modified mortar with polymer-cement ratio of 20% cured by standard condition is about 1.81 times, the cement mortar cured in water. It is apparent that the adhesion in tension of polymer-modified mortars according to raising of polymer-cement ratio is also much more improved irrespective of type of polymer dispersions and curing conditions.

  • PDF

Evaluation for Performance According to Curing Method of Polymer- Modified Mortars (폴리머 시멘트 모르타르의 양생방법에 따른 물성 평가)

  • Park, Hun-Il;Ryu, Byung-Cheoll;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.273-276
    • /
    • 2005
  • Polymer-modified mortar was developed for improving the performance of modified mortar which is mixed with polymer, and it is used for protecting and repairing materials of building because of their excellent performance to improve characteristics which are compressive strength, flexural strength, and adhesive strength. However, the performances of the polymer-modified mortars are highly affected by materials, which are polymer, mortar, and aggregates, and conditions which are curing environment and testing method. Furthermore, dry curing method after hydrated curing has been recommended to make strong polymer film for the best curing method to make excellent characteristics. In this report, We investigated the co-relation between curing methods and the characteristics, which are compressive strength, flexural strength, and adhesive strength for the polymer-modified mortars that are used in the domestic area.

  • PDF