• Title/Summary/Keyword: monotone method

Search Result 108, Processing Time 0.023 seconds

OUTER APPROXIMATION METHOD FOR ZEROS OF SUM OF MONOTONE OPERATORS AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Abass, Hammad Anuoluwapo;Mebawondu, Akindele Adebayo;Narain, Ojen Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.451-474
    • /
    • 2021
  • In this paper, we investigate a hybrid algorithm for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators which is also a common fixed point problem for finite family of relatively quasi-nonexpansive mappings and split feasibility problem in uniformly convex real Banach spaces which are also uniformly smooth. The iterative algorithm employed in this paper is design in such a way that it does not require prior knowledge of operator norm. We prove a strong convergence result for approximating the solutions of the aforementioned problems and give applications of our main result to minimization problem and convexly constrained linear inverse problem.

CONVERGENCE OF THE GENERALIZED MULTISPLITTING AND TWO-STAGE MULTISPLITTING METHODS

  • Oh, Se-Young;Yun, Jae-Heon;Han, Yu-Du
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.501-510
    • /
    • 2008
  • In this paper, we first provide a convergence result of the generalized two-stage splitting method for solving a linear system whose coefficient matrix is an H-matrix, and then we provide convergence results of the generalized multisplitting and two-stage multisplitting methods for both a monotone matrix and an H-matrix.

  • PDF

THE METHOD OF LOWER AND UPPER SOLUTIONS FOR IMPULSIVE FRACTIONAL EVOLUTION EQUATIONS IN BANACH SPACES

  • Gou, Haide;Li, Yongxiang
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.61-88
    • /
    • 2020
  • In this paper, we investigate the existence of mild solutions for a class of fractional impulsive evolution equation with periodic boundary condition by means of the method of upper and lower solutions and monotone iterative method. Using the theory of Kuratowski measure of noncompactness, a series of results about mild solutions are obtained. Finally, two examples are given to illustrate our results.

INERTIAL PROXIMAL AND CONTRACTION METHODS FOR SOLVING MONOTONE VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS

  • Jacob Ashiwere Abuchu;Godwin Chidi Ugwunnadi;Ojen Kumar Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.175-203
    • /
    • 2023
  • In this paper, we study an iterative algorithm that is based on inertial proximal and contraction methods embellished with relaxation technique, for finding common solution of monotone variational inclusion, and fixed point problems of pseudocontractive mapping in real Hilbert spaces. We establish a strong convergence result of the proposed iterative method based on prediction stepsize conditions, and under some standard assumptions on the algorithm parameters. Finally, some special cases of general problem are given as applications. Our results improve and generalized some well-known and related results in literature.

FIXED POINT SOLUTION METHODS FOR SOLVING EQUILIBRIUM PROBLEMS

  • Anh, Pham Ngoc;Hien, Nguyen Duc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.479-499
    • /
    • 2014
  • In this paper, we propose new iteration methods for finding a common point of the solution set of a pseudomonotone equilibrium problem and the solution set of a monotone equilibrium problem. The methods are based on both the extragradient-type method and the viscosity approximation method. We obtain weak convergence theorems for the sequences generated by these methods in a real Hilbert space.

Smoothing Kaplan-Meier estimate using monotone support vector regression (단조 서포트벡터기계를 이용한 카플란-마이어 생존함수의 평활)

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1045-1054
    • /
    • 2012
  • Support vector machine is known to be the very useful statistical method in classification and nonlinear function estimation. In this paper we propose a monotone support vector regression (SVR) for the estimation of monotonically decreasing function. The proposed monotone SVR is applied to smooth the Kaplan-Meier estimate of survival function. Experimental results are then presented which indicate the performance of the proposed monotone SVR using survival functions obtained by exponential distribution.

A new flexible Weibull distribution

  • Park, Sangun;Park, Jihwan;Choi, Youngsik
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.399-409
    • /
    • 2016
  • Many of studies have suggested the modifications on Weibull distribution to model the non-monotone hazards. In this paper, we combine two cumulative hazard functions and propose a new modified Weibull distribution function. The newly suggested distribution will be named as a new flexible Weibull distribution. Corresponding hazard function of the proposed distribution shows flexible (monotone or non-monotone) shapes. We study the characteristics of the proposed distribution that includes ageing behavior, moment, and order statistic. We also discuss an estimation method for its parameters. The performance of the proposed distribution is compared with existing modified Weibull distributions using various types of hazard functions. We also use real data example to illustrate the efficiency of the proposed distribution.

On Nonovershooting or Monotone Nondecreasing Step Response of Second-Order Systems

  • Kwon, Byung-Moon;Lee, Myung-Eui;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.283-288
    • /
    • 2002
  • This paper has shown that the impulse and the unit step responses of 2nd-order systems can be computed by an analytic method. Three different 2nd-order systems are investigated: the prototype system, the system with one LHP(left half plane) real zero and the system with one RHP(right half plane) real zero. It has also shown that the effects of the LHP or the RHP zero are very serious when the zero is getting closer to the origin on the complex plane. Based on these analytic results, this paper has presented two sufficient and necessary conditions for 2nd-order linear SISO(single-input/single-output) stable systems to have the nonovershooting and the monotone nondecreasing step response, respectively. The latter condition can be extended to the sufficient conditions for the monotone nondecreasing step response of high-order systems.

RELAXED PROXIMAL POINT ALGORITHMS BASED ON A-AXIMAL RELAXED MONOTONICITY FRAMEWORKS WITH APPLICATIONS

  • Agarwal, Ravi P.;Verma, Ram U.
    • East Asian mathematical journal
    • /
    • v.27 no.5
    • /
    • pp.545-555
    • /
    • 2011
  • Based on the A-maximal(m)-relaxed monotonicity frameworks, the approximation solvability of a general class of variational inclusion problems using the relaxed proximal point algorithm is explored, while generalizing most of the investigations, especially of Xu (2002) on strong convergence of modified version of the relaxed proximal point algorithm, Eckstein and Bertsekas (1992) on weak convergence using the relaxed proximal point algorithm to the context of the Douglas-Rachford splitting method, and Rockafellar (1976) on weak as well as strong convergence results on proximal point algorithms in real Hilbert space settings. Furthermore, the main result has been applied to the context of the H-maximal monotonicity frameworks for solving a general class of variational inclusion problems. It seems the obtained results can be used to generalize the Yosida approximation that, in turn, can be applied to first- order evolution inclusions, and can also be applied to Douglas-Rachford splitting methods for finding the zero of the sum of two A-maximal (m)-relaxed monotone mappings.