References
- R. P. Agarwal, M. Benchohra, and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010), no. 3, 973-1033. https://doi.org/10.1007/s10440-008-9356-6
- A. Aghajani, J. Banas, and N. Sabzali, Some generalizations of Darbo fixed point theorem and applications, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 2, 345-358. http://projecteuclid.org/euclid.bbms/1369316549 https://doi.org/10.36045/bbms/1369316549
- B. Ahmad and S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal. Hybrid Syst. 3 (2009), no. 3, 251-258. https://doi.org/10.1016/j.nahs.2009.01.008
- Z. Bai, X. Dong, and C. Yin, Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions, Bound. Value Probl. 2016 (2016), Paper No. 63, 11 pp. https://doi.org/10.1186/s13661-016-0573-z
- K. Balachandran and S. Kiruthika, Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), No. 4, 12 pp. https://doi.org/10.14232/ejqtde.2010.1.4
- J. Banas and K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, 60, Marcel Dekker, Inc., New York, 1980.
- M. Benchohra, J. Henderson, and S. Ntouyas, Impulsive differential equations and inclusions, Contemporary Mathematics and Its Applications, 2, Hindawi Publishing Corporation, New York, 2006. https://doi.org/10.1155/9789775945501
- M. Benchohra and D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), Special Edition I, No. 8, 14 pp. https://doi.org/10.14232/ejqtde.2009.4.8
- P. Chen and Y. Li, Mixed monotone iterative technique for a class of semilinear impulsive evolution equations in Banach spaces, Nonlinear Anal. 74 (2011), no. 11, 3578-3588. https://doi.org/10.1016/j.na.2011.02.041
- P. Chen, Y. Li, Q. Y. Chen, and B. H. Feng, On the initial value problem of fractional evolution equations with noncompact semigroup, Comput. Math. Appl. 67 (2014), no. 5, 1108-1115. https://doi.org/10.1016/j.camwa.2014.01.002
- S. W. Du and V. Lakshmikantham, Monotone iterative technique for differential equations in a Banach space, J. Math. Anal. Appl. 87 (1982), no. 2, 454-459. https://doi.org/10.1016/0022-247X(82)90134-2
- M. Feckan, Y. Zhou, and J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 7, 3050-3060. https://doi.org/10.1016/j.cnsns.2011.11.017
- D. J. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, Notes and Reports in Mathematics in Science and Engineering, 5, Academic Press, Inc., Boston, MA, 1988.
- D. J. Guo and J. X. Sun, Ordinary Differential Equations in Abstract Spaces. Shandong Science and Technology, Ji'nan (1989) (in Chinese).
- H.-P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. 7 (1983), no. 12, 1351-1371. https://doi.org/10.1016/0362-546X(83)90006-8
- H. Lakzian, D. Gopal, and W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fixed Point Theory Appl. 18 (2016), no. 2, 251-266. https://doi.org/10.1007/s11784-015-0275-7
- B. Li and H. Gou, Monotone iterative method for the periodic boundary value problems of impulsive evolution equations in Banach spaces, Chaos Solitons Fractals 110 (2018), 209-215. https://doi.org/10.1016/j.chaos.2018.03.027
- Y. Li, Positive solutions of abstract semilinear evolution equations and their applications, Acta Math. Sinica (Chin. Ser.) 39 (1996), no. 5, 666-672.
- J. Mu, Extremal mild solutions for impulsive fractional evolution equations with nonlocal initial conditions, Bound. Value Probl. 2012 (2012), 71, 12 pp. https://doi.org/10.1186/1687-2770-2012-71
- J. Mu and Y. Li, Monotone iterative technique for impulsive fractional evolution equations, J. Inequal. Appl. 2011 (2011), 125, 12 pp. https://doi.org/10.1186/1029-242X-2011-125
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. https://doi.org/10.1007/978-1-4612-5561-1
-
X.-B. Shu and Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 <
${\alpha}$ < 2, Comput. Math. Appl. 64 (2012), no. 6, 2100-2110. https://doi.org/10.1016/j.camwa.2012.04.006 - J. X. Sun and Z. Q. Zhao, Extremal solutions of initial value problem for integro-differential equations of mixed type in Banach spaces, Ann. Differential Equations 8 (1992), no. 4, 469-475.
- G.Wang, B. Ahmad, L. Zhang, and J. J. Nieto, Comments on the concept of existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), no. 3, 401-403. https://doi.org/10.1016/j.cnsns.2013.04.003
- G. Wang, L. Zhang, and G. Song, Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions, Nonlinear Anal. 74 (2011), no. 3, 974-982. https://doi.org/10.1016/j.na.2010.09.054
- J. Wang, M. Feckan, and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ. 8 (2011), no. 4, 345-361. https://doi.org/10.4310/DPDE.2011.v8.n4.a3
- J. Wang, M. Feckan, and Y. Zhou, Ulam's type stability of impulsive ordinary differential equations, J. Math. Anal. Appl. 395 (2012), no. 1, 258-264. https://doi.org/10.1016/j.jmaa.2012.05.040
-
J. Wang, X. Li, and W. Wei, On the natural solution of an impulsive fractional differential equation of order q
${\in}$ (1; 2), Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 11, 4384-4394. https://doi.org/10.1016/j.cnsns.2012.03.011 - J. Wang, Y. Zhou, and M. Feckan, Alternative results and robustness for fractional evolution equations with periodic boundary conditions, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), No. 97, 15 pp. https://doi.org/10.14232/ejqtde.2011.1.97
- J. Wang, Y. Zhou, and M. Feckan, On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl. 64 (2012), no. 10, 3008-3020. https://doi.org/10.1016/j.camwa.2011.12.064
- J. Wang, Y. Zhou, and M. Feckan, Abstract Cauchy problem for fractional differential equations, Nonlinear Dynam. 71 (2013), no. 4, 685-700. https://doi.org/10.1007/s11071-012-0452-9
- H. Ye, J. Gao, and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl. 328 (2007), no. 2, 1075-1081. https://doi.org/10.1016/j.jmaa.2006.05.061
- W.-X. Zhou and Y.-D. Chu, Existence of solutions for fractional differential equations with multi-point boundary conditions, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 3, 1142-1148. https://doi.org/10.1016/j.cnsns.2011.07.019