• Title/Summary/Keyword: moment rotation

Search Result 513, Processing Time 0.024 seconds

A Study on the Behavior of Frame with Connections between H-Beams and S . H . S Columns considering Joint Flexibility (H형강보.각형강관기둥 접합부의 연성도를 고려한 골조의 거동에 관한 연구)

  • 강석봉;김이두;박순규;김재훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.211-218
    • /
    • 1997
  • Analysis of structures are usually executed under the assumption that connections are either ideally pinned joint or fully rigid joint. But in general all structures is connected under the semi-rigid connections. Semi-rigid connect ions have demerits that is simplification work on connection's behavior, moment-rotation relationships of connect ions , apprehension of nonlinear analysis etc. On the other hand there is merits that is improvements of serviceability, economic efficiency, construction in predicting real behavior frames. This study is to make model of connect ions by based on experimental study and after analysis on frames considering characteristics of semi-rigid connections. semi-rigid connection's influence on the behavior of structures and fundamental data on application of structures that is connected between S H S column and H beam is exhibited.

  • PDF

Comparative analysis among deterministic and stochastic collision damage models for oil tanker and bulk carrier reliability

  • Campanile, A.;Piscopo, V.;Scamardella, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.21-36
    • /
    • 2018
  • The incidence of collision damage models on oil tanker and bulk carrier reliability is investigated considering the IACS deterministic model against GOALDS/IMO database statistics for collision events, substantiating the probabilistic model. Statistical properties of hull girder residual strength are determined by Monte Carlo simulation, based on random generation of damage dimensions and a modified form of incremental-iterative method, to account for neutral axis rotation and equilibrium of horizontal bending moment, due to cross-section asymmetry after collision events. Reliability analysis is performed, to investigate the incidence of collision penetration depth and height statistical properties on hull girder sagging/hogging failure probabilities. Besides, the incidence of corrosion on hull girder residual strength and reliability is also discussed, focussing on gross, hull girder net and local net scantlings, respectively. The ISSC double hull oil tanker and single side bulk carrier, assumed as test cases in the ISSC 2012 report, are taken as reference ships.

A study on the nonlinear analysis of spatial frame structures with nonlinear rotational spring elements (비선형 회전 스프링 요소를 갖는 공간 프레임의 구조의 비선형 해석에 관한 연구)

  • 이병채;박문식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.29-42
    • /
    • 1990
  • Three dimensional frame structures with such nonlinearities as large displacements, medium rotations, plastic hinges and local defects are efficiently analyzed by introducing the nonlinear rotational spring. Formulations are based on the incremental updated Lagrangian descriptions and the virtual work principle, Axial displacement and twisted angle in beam elements are interpolated linearly, while bending displacements are approximated by the Hermite polynomials. The modified are length method is used as a solution method. The moment-angle of rotation relationship obtained analytically or experimentally can be easily incorporated into the solution procedure. Several examples tested show that the present method can be used efficiently in analyzing nonlinear frame structures with plastic hinges or local defect.

  • PDF

GYROSCOPIC EFFECT ON MODE SPLITTING IN ROTATING DISK: HDD SPINDLE SYSTEM VIBRATIONS

  • Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.43-49
    • /
    • 1997
  • A rotating rigid disk, attached on a flexible shaft or supported by a torsional spring, experiences precessional whirling due to gyroscopic moment loading. It is well known in rotor dynamics area that, as the rotational speed increases, the precessional mode of the rotating rigid disk starts splitting into two: forward and backward precessional modes. On the other hand, it is also well known in disk vibration area that a rotating flexible disk also shows another kind of mode splitting phenomenon due to the rotation, resulting in forward and backward traveling waves. When rotating multiple flexible disks are coupled in vibration with the supporting Flexible shaft, the associated mode splitting should be compatible with the two seemingly different vibration analysis methods. This paper investigates the possibility of fusing the precessional and traveling wave mode splittings so that the bending coupled disk vibrations in HDD spindle systems can be better understood.

  • PDF

Analysis of step climbing and descending by tandem wheelchairs connected by passive link

  • Ikeda, Hidetoshi;Wang, Zhi-Dong;Takahashi, Takayuki;Nakano, Eiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.30.1-30
    • /
    • 2001
  • This paper describes a new cooperative strategy for two wheelchairs to climb a step. These two wheelchairrobots are connected with a simple linkage mechanism between the rear of one wheelchair and the front of another. Two wheelchair robots climb a step one after the other. In this research, We did not use a method by Which a robot lifts up and supports its weight using any special actuator but a method of handling the robot's moment of rotation by the force of the link which come from the assisting robot. This method is especially influenced by the height of the two robot's link positions. So we study this method from the viewpoint of changing the two-link positions....

  • PDF

On the seismic response of steel buckling-restrained braced structures including soil-structure interaction

  • Flogeras, Antonios K.;Papagiannopoulos, George A.
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.469-478
    • /
    • 2017
  • This paper summarizes estimated seismic response results from three-dimensional nonlinear inelastic time-history analyses of some steel buckling-restrained braced (BRB) structures taking into account soil-structure interaction (SSI). The response results involve mean values for peak interstorey drift ratios, peak interstorey residual drift ratios and peak floor accelerations. Moreover, mean seismic demands in terms of axial force and rotation in columns, of axial and shear forces and bending moment in BRB beams and of axial displacement in BRBs are also discussed. For comparison purposes, three separate configurations of the BRBs have been considered and the aforementioned seismic response and demands results have been obtained firstly by considering SSI effects and then by neglecting them. It is concluded that SSI, when considered, may lead to larger interstorey and residual interstorey drifts than when not. These drifts did not cause failure of columns and of the BRBs. However, the BRB beam may fail due to flexure.

Ultimate strength of stiffened panels subjected to non-uniform thrust

  • Anyfantis, Konstantinos N.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.325-342
    • /
    • 2020
  • The current study is focused on the evaluation of the ultimate strength of stiffened panels found in ship hull structures that are subjected to combined uniaxial thrust, in-plane and out-of-plane bending moments. This loading condition, which is in general ignored when performing buckling checks, applies to representative control geometries (stiffener with attached plating) as a consequence of the linearly varying normal stresses along the ship's depth induced by the hull-girder vertical bending moment. The problem is generalized by introducing a non-uniform thrust described by a displacement ratio and rotation angle and by introducing the slenderness ratios, within the practical range of interest. The formed design space is explored through methods sourcing from Design of Experiments and by applying non-linear finite element procedures. Surrogate empirical models have been constructed through regression analysis and Response Surface Methods. An additional empirical model is provided to the literature for predicting the ultimate strength under uniaxial thrust. The numerical experimentation has shown that is a significant influence on the ultimate strength of stiffened panels as the thrust non-uniformity increases.

Analysis of Shear Force in Perimeter Column due to Outrigger Wall in a Tall Building (고층 건물의 아웃리거 벽체에 의한 외부 기둥의 전단력 해석)

  • Huang, Yi-Tao;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.293-299
    • /
    • 2018
  • Steel truss outriggers can be replaced by reinforced concrete walls to control the lateral drift of tall buildings. When reinforced concrete outrigger walls are connected to perimeter columns, not only axial forces but also shear forces and moments can be induced on the perimeter columns. In this study, the shear force of the perimeter column due to the rotation of the outer edge of the outrigger wall is derived as analytic equations and the result is compared with the finite element analysis result. In the finite element analysis, the effects of connecting beams at each floor and the effect of modeling shear walls and outriggers with beam element and plane stress element was analyzed. The effect of the connecting beam was almost negligible and the plane stress element was determined to have greater stiffness than the beam element. The inter-story rotation and the shear force of the perimeter column due to the rotation of the outer edge of the outrigger wall was considerably smaller than the allowable value. Therefore, even if the outrigger wall made of reinforced concrete is applied to a tall building, it is considered that there is no need to study the shear force and moment induced in the perimeter columns.

Effects of Physical Characteristics Factors on Ankle Joint Injury during One Leg Drop Landing (외발 착지 시 신체적 특성 요인들이 발목 관절 상해에 미치는 영향)

  • Lee, Seong-Yeol;Lee, Hyo-Keun;Kwon, Moon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.839-847
    • /
    • 2020
  • The purpose of this study was to analyze the effects of ankle flexibility, gender, and Q-angle on the ankle joint injury factors during one leg drop landing. For this study, 16 males(age: 20.19±1.78 years, mass: 69.54±10.12 kg, height: 173.22±4.43 cm) and 16 females(age: 21.05±1.53 years, mass: 61.75±6.97 kg, height: 159.34±4.56 cm) in their 20's majoring in physical education using the right foot as their dominant feet were selected as subjects. First, an independent t-test of joint motion and joint moment according to the experience of ankle injury was conducted to determine the effect of physical characteristics on ankle joint injury during one leg drop landing(α = .05). Second, the variable that showed a significant difference through t-test was set as the dependent variable, and the ankle flexibility, gender difference, and Q-angle were designated as independent variables to use Multiple Linear Regression(α =. 05). As a result of this study, it was found that the group that experienced an ankle joint injury was found to use a landing strategy and technique through adduction of the ankle joint and internal rotation of the knee joint, unlike the group without an injury. It was also confirmed that this movement increases the extension moment of the ankle joint and decreases the extension moment of the hip joint. In particular, it was found that the dorsi flexion flexibility of the ankle affects the ankle and knee landing strategy, and the gender difference affects the ankle extension moment. Therefore, it was confirmed that physical characteristics factors affecting ankle joint injuries during one leg drop landing.

Seismic Retrofit of Welded Steel Moment Connections Considering the Presence of Composite Floor Slabs (바닥슬래브를 고려한 용접철골모멘트접합부의 내진보강)

  • Lee, Cheol Ho;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.25-36
    • /
    • 2017
  • In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange was prevalent. The presence of a concrete slab and resulting composite action was speculated as one of the critical causes of the prevalent bottom flange fracture. In this study, four seismic retrofit schemes are proposed in order to salvage welded steel moment connections with composite floor slabs in existing steel moment frames. Because top flange modification of existing beams is not feasible due to the presence of a concrete floor slab, three schemes of bottom flange modification by using welded triangular or straight haunches or RBS(reduced beam section), and beam web strengthening by attaching heavy shear tab were cyclically tested and analyzed. Test results of this study show that haunch and web-strengthened specimens can eliminate the detrimental effect caused by composite action and ensure excellent connection plastic rotation exceeding 5% rad. Design recommendations for each retrofit scheme together with supplemental numerical studies are also presented.