• Title/Summary/Keyword: modified energy functional

Search Result 80, Processing Time 0.029 seconds

Relationships between dielectric properties and characteristics of impregnated and activated samples of potassium carbonate-and sodium hydroxide-modified palm kernel shell for microwave- assisted activation

  • Alias, Norulaina;Zaini, Muhammad Abbas Ahmad;Kamaruddin, Mohd Johari
    • Carbon letters
    • /
    • v.24
    • /
    • pp.62-72
    • /
    • 2017
  • The aim of this work was to evaluate the dielectric properties of impregnated and activated palm kernel shells (PKSs) samples using two activating agents, potassium carbonate ($K_2CO_3$) and sodium hydroxide (NaOH), at three impregnation ratios. The materials were characterized by moisture content, carbon content, ash content, thermal profile and functional groups. The dielectric properties were examined using an open-ended coaxial probe method at various microwave frequencies (1-6 GHz) and temperatures (25, 35, and $45^{\circ}C$). The results show that the dielectric properties varied with frequency, temperature, moisture content, carbon content and mass ratio of the ionic solids. PKSK1.75 (PKS impregnated with $K_2CO_3$ at a mass ratio of 1.75) and PKSN1.5 (PKS impregnated with NaOH at a mass ratio of 1.5) exhibited a high loss tangent ($tan{\delta}$) indicating the effectiveness of these materials to be heated by microwaves. $K_2CO_3$ and NaOH can act as a microwave absorber to enhance the efficiency of microwave heating for low loss PKSs. Materials with a high moisture content exhibit a high loss tangent but low penetration depth. The interplay of multiple operating frequencies is suggested to promote better microwave heating by considering the changes in the materials characteristics.

Surface Modification Effect and Mechanical Property of para-aramid Fiber by Low-temperature Plasma Treatment (저온 플라즈마 처리를 이용한 파라 아라미드 섬유의 표면 개질 효과 및 역학적 특성(2))

  • Park, Sung-Min;Son, Hyun-Sik;Sim, Ji-Hyun;Kim, Joo-Young;Kim, Taekyeong;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.18-26
    • /
    • 2015
  • para-aramid fibers were treated by atmosphere air plasma to improve the interfacial adhesion. The wettability of plasma-treated aramid fiber was observed by means of dynamic contact angle surface free energy measurement. Surface roughness were investigated with the help of scanning electron microscopy and atomic force microscopy. The tensile test of aramid fiber roving was carried out to determine the effect of plasma surface treatments on the mechanical properties of the fibers. A pull-out force test was carried out to observe the interfacial adhesion effect with matrix material. It was found that surface modification and a chemical component ratio of the aramid fibers improved wettability and adhesion characterization. After oxygen plasma, it was indicated that modified the surface roughness of aramid fiber increased mechanical interlocking between the fiber surface and vinylester resin. Consequently the oxygen plasma treatment is able to improve fiber-matrix adhesion through excited functional group and etching effect on fiber surface.

Removal of different anionic dyes from aqueous solution by anion exchange membrane

  • Khan, Muhammad Ali;Khan, Muhammad Imran;Zafar, Shagufta
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.259-277
    • /
    • 2017
  • Adsorption is a widely used technique for the removal of dyes from wastewaters by variety of adsorbents. In this work, the main focus is on the potential assessment of anion exchange membrane for the removal of different dyes using batch system and investigation of experimental data by applying various kinetic and thermodynamic models. The removal of anionic dyes i.e., Eosin-B, Eriochrome Black-T and Congo Red by anion exchange membrane BII from aqueous solution was carried out and effect of various parameters such as contact time, membrane dosage, temperature and ionic strength on the percentage removal of anionic dyes was studied. The experimental data was assessed by kinetic models namely pseudo-first-order, pseudo-second-order, Elovich liquid film diffusion, Bangham and the modified Freundlich models equation have been used to analyze the experimental data. These results indicate that the adsorption of these anionic dyes on BII follows pseudo-second-order kinetics with maximum values of regression coefficient (0.992-0.998) for all the systems. The adsorption of dyes was more suitable to be controlled by a liquid film diffusion mechanism. The adsorptive removal of dye Eosin-B and Eriochrome Black-T were decreased with temperature and thermodynamic parameters such as free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$) and entropy (${\Delta}S^o$) for adsorption of dyes on membrane BII were calculated at 298 K, 308 K and 318 K. The values of enthalpy and entropy were negative for EB and EBT representing that the adsorption of these dyes on BII is physiosorptive and exothermic in nature. Whereas the positive values of enthalpy and entropy for CR adsorption on BII, indicating that its adsorption is endothermic and spontaneous in nature. It is evident from this study that anion exchange membrane has shown good potential for the removal of dyes from aqueous solution and it can be used as adsorbent for dues removal on commercial levels.

Stability of Pre-treated Fillers for High Loaded Printing Paper (고충전 인쇄용지 제조를 위한 중질 탄산칼슘 전처리 기술의 안정성에 관한 연구)

  • Seo, Yung Bum;Choi, Jin Sung;Ji, Sung Gil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • More addition of calcium carbonate in printing paper allows savings of the wood fibers and the drying energy. Pre-flocculation of GCC (ground calcium carbonate) using functional polymers was known as the best available technology to make high loaded paper until now, and it allowed less reduction of the paper essential properties such as tensile strength and smoothness at higher GCC content. However, pre-flocculated GCC became unstable in size under the continued agitation in the mill. Therefore, pre-flocculation method was modified in such a way that the in-situ calcium carbonate was formed between the GCC particles of the pre-flocculated GCC, and the resultant became more stable in size, which we named as HCC (hybrid calcium carbonate). HCC turned out to make high tensile strength and smoothness as much as the pre-flocculated GCC and gave much better size stability against stirring. Furthermore, HCC gave high bulk that pre-flocculation could not make.

Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber (고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술)

  • Lee, Bum-Jae;Lim, Ki-Won;Ji, Sang-Chul;Jung, Kwon-Young;Kim, Tae-Jung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.232-243
    • /
    • 2009
  • The specialized and diversified synthetic and compounding technologies are used to meet the requirements for the advanced high performance tire tread materials with better balance of fuel economy(rolling resistance), safety(wet traction) and wear resistance. These techniques involve the methodology for the improvement of chemical and physical interaction between filler and the rubber matrix using coupling agents as well as a variety of chemically-modified solution SBRs. The research trends about the high performance functional SBRs and coupling agents which can interact with the surface of fillers and their working mechanism were investigated in the conventional carbon black-filled rubber and silica-filled SBR systems developed recently as "green tire".

Membrane Containing Biocidal Material for Reduced Biofilm Formation: A Review (미생물막 형성을 막기 위한 살균 물질 함유 막: 총설)

  • Son, Soohyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Bacteria grow biofilm on various surface such as separation membrane, food packaging film and biomedical device. Growth of biofilm is associated with the formation of a complex structure of exopolysaccharides. Effect of antibacterial effect reduce drastically once the biofilm developed due to the difficulties in mass transport of antimicrobial agent. In order to enhance the antibacterial activity, surface of the membrane is modified, coated or immobilized with functional materials with biocidal properties. One of the idea is to introduce positive charge on the membrane surface by the presence of quaternary ammonium group which might displace divalent metal ion such as magnesium or calcium present in the bacteria cell wall. Efficacy of cell membrane disruption depends on the mobility of the agents available directly on the surface environment. In this review, various biocidal agents like quaternary ammonium group, helamine or zwitter ion containing membrane are discussed.

An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries

  • Mohamad A. Raja;Su Hyun Lim;Doyun Jeon;Hyunsoo Hong;Inyeong Yang;Sanha Kim;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.416-421
    • /
    • 2023
  • Multifunctional composite materials capable of both load-carrying and energy functions are promising innovative candidates for the advancement of contemporary technologies owing to their relative feasibility, cost-effectiveness, and optimized performance. Carbon fiber (CF)-based structural batteries utilize the graphitic inherent structure to enable the employment of carbon fibers as electrodes, current collectors, and reinforcement, while the matrix system is an ion-conduction and load transfer medium. Although it is possible to enhance performance through the modification of constituents, there remains a need for a systematic design methodology scheme to streamline the commercialization of structural batteries. In this work, a bi-phasic epoxy-based ionic liquid (IL) modified structural battery electrolyte (SBE) was developed via thermally initiated phase separation. The polymer's morphological, mechanical, and electrochemical characteristics were studied. In addition, the interfacial shear strength (IFSS) between CF/SBE was investigated via microdroplet tests. The results accentuated the significance of considering IFSS and matrix plasticity in designing composite structural batteries. This approach is expected to lay the foundation for realizing smart structures with optimized performance while minimizing the need for extensive trial and error, by paving the way for a streamlined computational design scheme in the future.

A Study on Physical Dispersion and Chemical Modification of Graphene (Graphene의 물리적 분산과 화학적 표면 개질 연구)

  • Yim, Eun-Chae;Kim, Seong-Jun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.792-797
    • /
    • 2015
  • Graphene has a wide spectrum on its application field due to various and excellent physical properties. However, it is very difficult to apply that graphene exists as lump or fold condition in general organic solvents. Besides, graphene was difficult to maintain as uniform condition due to chemical inert and distributions with various size and shapes. Therefore, this study was focused to study dispersion and modifying methods of aggregated graphene. The dispersion methods contain as follow: i) physical milling using glass bead, ii) co-treatment of glass bead and ultrasonic waves, iii) dispersion in organic solvents, iv) modifying with dry-ice. Milling using glass bead with size 2.5 mm was effective to be size decrease of 36.4% in comparison with control group. Mixed treatment of glass bead (size 2.5 mm) and ultrasonic waves (225W, 10 min) showed relative size decrease of 76%, suggesting that the size decrease depends on the size of glass bead, intensity of ultrasonic waves and treatment time. Solvents of Ethyl acetate (EA) and Isoprophyl alcohol (IPA) were used in order to improve dispersion by modifying surface of graphene. IPA of them showed a favorable dispersion with more -CO functional groups in the FT-IR analysis. On the other hand, the oxygen content of graphene surface modified by dry-ice was highly increased from 0.8 to 4.9%. From the results, it was decided that the favorable dispersion state for a long time was obtained under the condition of -CO functional group increase in IPA solvent.

Eco-Friendly Light Emitting Diodes Based on Graphene Quantum Dots and III-V Colloidal Quantum Dots

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.65-65
    • /
    • 2015
  • In this talk, I will introduce two topics. The first topic is the polymer light emitting diodes (PLEDs) using graphene oxide quantum dots as emissive center. More specifically, the energy transfer mechanism as well as the origin of white electroluminescence in the PLED were investigated. The second topic is the facile synthesis of eco-friendly III-V colloidal quantum dots and their application to light emitting diodes. Polymer (organic) light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nanomaterial without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence (EL) from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. (Sci Rep., 5, 11032, 2015). New III-V colloidal quantum dots (CQDs) were synthesized using the hot-injection method and the QD-light emitting diodes (QLEDs) using these CQDs as emissive layer were demonstrated for the first time. The band gaps of the III-V CQDs were varied by varying the metal fraction and by particle size control. The X-ray absorption fine structure (XAFS) results show that the crystal states of the III-V CQDs consist of multi-phase states; multi-peak photoluminescence (PL) resulted from these multi-phase states. Inverted structured QLED shows green EL emission and a maximum luminance of ~45 cd/m2. This result shows that III-V CQDs can be a good substitute for conventional cadmium-containing CQDs in various opto-electronic applications, e.g., eco-friendly displays. (Un-published results).

  • PDF

Development and the Long-Term Test of Anti-Adhesion Surface Coating Technology on Electric Power Distribution Equipment (배전기기 외함 부착방지 및 자기세정 코팅기술 개발 및 현장실증)

  • Shim, Myung Jin;Sohn, Song Ho;Seo, Ji Hoon;Han, Sang Chul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.285-288
    • /
    • 2020
  • The demand for coating technology on electric power equipment that has arisen from such issues regarding the attaching of illegal advertisements and posters to electric power distribution boxes such as TR, SW, etc. in down town areas seeks to produce functional coating surfaces using polymers and nano-materials that will result in improvements in self-cleaning performance and greater stability even under harsh environmental conditions. KEPCO-coatings consist of copolymerized acrylic resin and methacryl-modified reactive silicone that are able to chemically combine, which results in performance improvement without any leakage of of silicone, thus contributing to its properties of high-stability. Thus, the research team has also started long-term on-site testing on 9 electric power distribution spots around a city center in cooperation with the KEPCO Daeduck-yusung branch. The KEPCO-coating technology could advance the best coating materials and processes to meet appropriate circumstances for a variety of outdoor damage environment. It is also predicted that KEPCO could be possible to expand international electric maintenance markets and to arrange business platforms if KEPCO would achieve its original technology (IPs) by the means of upgrading in self-cleaning coating technology and obtaining long-term on-site test records from nationwide electric facilities.