DOI QR코드

DOI QR Code

A Study on Physical Dispersion and Chemical Modification of Graphene

Graphene의 물리적 분산과 화학적 표면 개질 연구

  • Yim, Eun-Chae (Interdisciplinary program of graduate school for bioenergy and biomaterials, Chonnam National University) ;
  • Kim, Seong-Jun (Department of Environment and Energy engineering, Chonnam National University)
  • 임은채 (전남대학교 바이오에너지 및 바이오소재 협동과정) ;
  • 김성준 (전남대학교 환경공학과)
  • Received : 2014.12.22
  • Accepted : 2015.04.03
  • Published : 2015.12.01

Abstract

Graphene has a wide spectrum on its application field due to various and excellent physical properties. However, it is very difficult to apply that graphene exists as lump or fold condition in general organic solvents. Besides, graphene was difficult to maintain as uniform condition due to chemical inert and distributions with various size and shapes. Therefore, this study was focused to study dispersion and modifying methods of aggregated graphene. The dispersion methods contain as follow: i) physical milling using glass bead, ii) co-treatment of glass bead and ultrasonic waves, iii) dispersion in organic solvents, iv) modifying with dry-ice. Milling using glass bead with size 2.5 mm was effective to be size decrease of 36.4% in comparison with control group. Mixed treatment of glass bead (size 2.5 mm) and ultrasonic waves (225W, 10 min) showed relative size decrease of 76%, suggesting that the size decrease depends on the size of glass bead, intensity of ultrasonic waves and treatment time. Solvents of Ethyl acetate (EA) and Isoprophyl alcohol (IPA) were used in order to improve dispersion by modifying surface of graphene. IPA of them showed a favorable dispersion with more -CO functional groups in the FT-IR analysis. On the other hand, the oxygen content of graphene surface modified by dry-ice was highly increased from 0.8 to 4.9%. From the results, it was decided that the favorable dispersion state for a long time was obtained under the condition of -CO functional group increase in IPA solvent.

그래핀은 다양하고 뛰어난 물성으로 그 적용 분야가 넓다. 그러나 반델반스 상호 작용으로 유기용매 내에서 쉽게 분산되지 않고 뭉쳐 있거나 포개진 상태로 존재한다. 게다가 그래핀은 화학적으로 비활성이며 크기나 모양이 넓은 분포도를 가지므로 균일한 상태 유지가 어렵다. 본 연구에서는 덩어리로 구성된 그래핀을 용매에 분산시키고 개질시키는 방법에 대해서 고찰하였다. 분산방법으로서 i) 유리비드를 이용한 물리적 분쇄. ii) 유리비드와 초음파를 이용한 처리 iii)유기용매에서의 분산 iv)드라이아이스를 이용한 개질법이 포함된다. 2.5 mm 크기의 유리비드처리는 대조구와 비교하여 36.4%의 감소율을 나타내었다. 유리비드(2.5 mm)와 초음파(225W, 10분) 병용 처리구가 76%로 입자 크기 감소효과를 나타내었다. 그래핀 입자 크기감소는 유리비드의 크기와 초음파 처리강도와 처리시간에 의존되었다. Ethyl acetate(EA)와 Isoprophyl alcohol(IPA)의 용매로 그래핀 표면을 개질시켰다. IPA용매에서 FT-IR 분석결과 CO 작용기가 높게 나타남으로 확인할 수 있었다. 한편, 드라이아이스로 그래핀 표면을 개질시킨 결과 처리 전 산소함량이 0.80%에서 처리 후 4.90%로 산소 함량 크게 증가되었다. 본 연구 결과로부터 IPA용매에 그래핀을 분산시킬 때 CO 작용기가 증가하여 장시간 분산상태 유지에 도움이 되는 것으로 판단된다.

Keywords

References

  1. Zhang, Y., Tan, J. W., Stormer, K. L. and Kim P., "Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene," Nature, 438, 201-204(2005). https://doi.org/10.1038/nature04235
  2. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y. and Hong, B. H., "Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes," Nature, 457, 706-710(2009). https://doi.org/10.1038/nature07719
  3. Lu, Y., Goldsmith, B. R., Kybert, N. J. and Johnson, A. T. C., "DN-decorated Graphene Chemical Sensors," Appl. Phys. Lett., 97, 083107(2010). https://doi.org/10.1063/1.3483128
  4. Bi, H., Huang, F., Liang, J., Xie, X. and Jiang, M., "Transparent Conductive Graphene Films Synthesized by Ambient Pressure Chemical Vapor Deposition Used as the Front Electrode of CdTe Solar Cells," Adv. Mater., 23, 3202-3206(2011). https://doi.org/10.1002/adma.201100645
  5. Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, M., Piner, R. D., Adamson, D. H., Schniepp, H. C., Chen, X., Ruoff, R. S., Nguyen, S. T., Aksay, I. A., Prud'Homme, R. K. and Brinson, L. C., "Functionalized Graphene Sheets for Polymer Nanocomposites," Nature Nanotechnology, 3, 327-331 (2008). https://doi.org/10.1038/nnano.2008.96
  6. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y. Y., Wu, Y., Nguyen, S. T. and Ruoff, R. S., "Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide," Carbon, 45, 1558-1565(2007). https://doi.org/10.1016/j.carbon.2007.02.034
  7. Chen, J., Hamon, M. A., Hu, H., Chen, Y., Rao, A. M., Eklund, P. C. and Haddon, R. C., "Solution Properties of Single-walled Carbon Nanotubes," Science, 282, 95(1998). https://doi.org/10.1126/science.282.5386.95
  8. Xu, Y., Bai, H., Lu, G., Li, C. and Shi, G., " Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets," J. Am. Chem. Soc., 130, 5856(2008). https://doi.org/10.1021/ja800745y
  9. Chen, R. J., Zhang, Y., Wang, D. and Dai, H., "Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization," J. Am. Chem. Soc., 123, 3838-3839(2001). https://doi.org/10.1021/ja010172b
  10. Chunder, A., Liu, J. and Zhai, L., Reduced Graphene Oxide/Poly(3-hexylthiophene) Supramolecular Composites," Macromol. Rapid Commun., 31, 380-384(2010). https://doi.org/10.1002/marc.200900626
  11. Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Kalsson, L. S., Blighe, F. M., De, S., Wang, Z., McGovern, T., Duesberg, G. S. and Coleman, J. N., "Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions," J. Am. Chem. Soc., 131, 3611-3620(2009). https://doi.org/10.1021/ja807449u
  12. Rourke, J. P., Pandey, P. A., Moore, J. J., Bates, M., Kinloch, I. A., Young, R. J. and Wilson, N. R., "The Real Graphene Oxide Revealed; Stripping the Oxidative Debris from the Graphene-like Sheets," Angew. Chem. Int. Ed. Engl, 50, 3173-3177(2011). https://doi.org/10.1002/anie.201007520
  13. Yim, E. C., Kim, S. J., Oh, I. K. and Kee, C. D., "Plasma Surface Modification of Graphene and Combination with Bacteria cellulose," Korean Chem. Eng. Res., 51(3), 1-6(2013). https://doi.org/10.9713/kcer.2013.51.1.1
  14. Jeon, I. Y., Shin, Y. R., Sohn, G. J., Choi, H. J., Bae, S. Y., Mahmood, J., Jung, S. M., Seo, J. M., Kim, M. J., Chang, D.W., Dai, L. and Baek, J. B., "Edge-carboxylated Graphene Nanosheets Via Ball Milling," Proceedings of the National Academy of Sciences of the United States of America PNAS, vol. 109 no. 15.