• 제목/요약/키워드: modeling parameters

검색결과 3,195건 처리시간 0.031초

측정한 산란계수에 의한 HEMT Modeling 변수의 결정에 관한 연구 (A Study of Determination of the Basic Device Parameters of HEMT Modeling by Measured S-parameter)

  • 박순태;손병문
    • 대한전자공학회논문지TE
    • /
    • 제37권1호
    • /
    • pp.1-11
    • /
    • 2000
  • 본 논문에서는 HEMT의 산란계수와 DC특성을 측정하여 모델링 변수들을 정확하게 추출하는 방법을 제안하였다, HEMT의 소신호 등가회로 모델링 변수들 중 extrinsic 직렬 저항은 측정한 DC특성을 이용하여 FUKUI 방법으로 구하였고, 다른 모델링 변수들은 HP 8510C Network Analyzer를 사용하여 여러 바이어스에서 측정한 S-parameter를 이용하여 변수 값을 결정하였다. 최적화 과정을 거쳐 얻은 등가 회로의 중요한 변수인 gm값은 실제 측정한 gm값과 0.078%오차만을 보인 반면, 제작자가 제공한 데이터를 이용하여 최적화하여 얻은 gm값은 실제 측정한 gm값과 175.38%나 오차를 보였다. 그러므로 반드시 정확하게 측정하여 얻은 초기 값을 가지고 정확한 변수를 측정할 수 있다는 것과 HEMT 모델링 변수들을 추출하는 과정을 자세하게 제시했다.

  • PDF

Circuit Modeling of Interdigitated Capacitors Fabricated by High-K LTCC Sheets

  • Kim, Kil-Han;Ahn, Min-Su;Kang, Jung-Han;Yun, Il-Gu
    • ETRI Journal
    • /
    • 제28권2호
    • /
    • pp.182-190
    • /
    • 2006
  • The circuit modeling of interdigitated capacitors fabricated by high-k low-temperature co-fired ceramic (LTCC) sheets was investigated. The s-parameters of each test structure were measured from 50 MHz to 10 GHz, and the modeling was performed using these measured sparameters up to the first resonant frequency. Each test structure was divided into appropriate building blocks. The equivalent circuit of each building block was composed based on the partial element equivalent circuit (PEEC) method. Modeling was executed to optimize the parameters in the equivalent circuit of each building block. The validity of the extracted parameters was verified by the predictive modeling for the test structures with different geometry. After that, Monte Carlo analysis and sensitivity analysis were performed based on the extracted parameters. The modeling methodology can allow a device designer to improve the yield and to save time and cost for the design and manufacturing of devices.

  • PDF

A New Concept of Manipulator Modeling

  • Roh, Ho-Sik;Kim, Jin-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2546-2550
    • /
    • 2003
  • We propose a new method of robot manipulator modeling. Different from existing modelers, our modeler provides a convenient robot modeling configured from modules from module library or module modeling. In addition, a way of using D-H parameters to configure a robot is proposed. These additional functions of robot modeling can be a powerful and flexible tool for various needs of robot modeling. We show an example of modeling with our approach.

  • PDF

VOICE SOURCE ESTIMATION USING SEQUENTIAL SVD AND EXTRACTION OF COMPOSITE SOURCE PARAMETERS USING EM ALGORITHM

  • Hong, Sung-Hoon;Choi, Hong-Sub;Ann, Sou-Guil
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.893-898
    • /
    • 1994
  • In this paper, the influence of voice source estimation and modeling on speech synthesis and coding is examined and then their new estimation and modeling techniques are proposed and verified by computer simulation. It is known that the existing speech synthesizer produced the speech which is dull and inanimated. These problems are arised from the fact that existing estimation and modeling techniques can not give more accurate voice parameters. Therefore, in this paper we propose a new voice source estimation algorithm and modeling techniques which can not give more accurate voice parameters. Therefore, in this paper we propose a new voice source estimation algorithm and modeling techniques which can represent a variety of source characteristics. First, we divide speech samples in one pitch region into four parts having different characteristics. Second, the vocal-tract parameters and voice source waveforms are estimated in each regions differently using sequential SVD. Third, we propose composite source model as a new voice source model which is represented by weighted sum of pre-defined basis functions. And finally, the weights and time-shift parameters of the proposed composite source model are estimeted uning EM(estimate maximize) algorithm. Experimental results indicate that the proposed estimation and modeling methods can estimate more accurate voice source waveforms and represent various source characteristics.

  • PDF

저가형 해파 모니터링 시스템을 위한 파형 모델링 (Wave Modeling for Low-cost Wave Monitoring System)

  • 이중현;이동욱;허문범
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.383-388
    • /
    • 2014
  • This paper describes a wave modeling method using low-cost sensors. Wave modeling is applied to the wave monitoring system for accurate measurement of ocean wave parameters. The observation of ocean wave parameters is necessary to improve the accuracy of forecast of ocean wave condition. However, the ocean wave parameters measured by a low-cost wave monitoring system suffer from several errors. Therefore we introduce a wave modeling method to compensate the ocean wave parameters corrupted by errors. The proposed method is analyzed using experiments within controlled environment. It is verified that the accuracy of low-cost wave monitoring system can be increased by the proposed method.

형상 파라메터와 평활화 스키닝을 이용한 선수 선형 곡면 모델링 (Surface Modeling of Forebody's Hull Form Using Form Parameters and Fair-Skinning)

  • 김현철;황보승면
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.601-610
    • /
    • 2008
  • This paper deals with a new geometrical surface modeling method of forebody's hull form which is fully defined by form parameters. The complex hull form in the forebody can be modeled by the combination of three parts: bare hull, bulbous bow and blending part which connects a bare hull and a bulbous bow. All these subdomain parts are characterized by each own form parameters and constructed with simple surface model. For this, we need only 2-dimensional hull form data and then the form parameters are calculated automatically from these data. Finally, the smooth hull form surfaces are generated by parametric design and fair-skinning. In the practical point of view, we show that this new method can be useful and efficient modeling tool by applying to the hull form surface modeling of Panamax container's forebody.

Assessment of modal parameters considering measurement and modeling errors

  • Huang, Qindan;Gardoni, Paolo;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.717-733
    • /
    • 2015
  • Modal parameters of a structure are commonly used quantities for system identification and damage detection. With a limited number of studies on the statistics assessment of modal parameters, this paper presents procedures to properly account for the uncertainties present in the process of extracting modal parameters. Particularly, this paper focuses on how to deal with the measurement error in an ambient vibration test and the modeling error resulting from a modal parameter extraction process. A bootstrap approach is adopted, when an ensemble of a limited number of noised time-history response recordings is available. To estimate the modeling error associated with the extraction process, a model prediction expansion approach is adopted where the modeling error is considered as an "adjustment" to the prediction obtained from the extraction process. The proposed procedures can be further incorporated into the probabilistic analysis of applications where the modal parameters are used. This study considers the effects of the measurement and modeling errors and can provide guidance in allocating resources to improve the estimation accuracy of the modal data. As an illustration, the proposed procedures are applied to extract the modal data of a damaged beam, and the extracted modal data are used to detect potential damage locations using a damage detection method. It is shown that the variability in the modal parameters can be considered to be quite low due to the measurement and modeling errors; however, this low variability has a significant impact on the damage detection results for the studied beam.

모달 파라미터를 이용한 보 구조물의 모델링 (Modeling of Beam Structures from Modal Parameters)

  • 황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.519-522
    • /
    • 2006
  • Accurate modeling of a dynamic system from experimental data is the bases for the model updating or heath monitoring of the system. Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a new method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The modeling of a cantilevered beam from modal parameters is an example to prove the efficiency and accuracy of the present method. Using the lateral displacements only, not the rotations, gives limited information for the system. The numerical verification up to now gives reasonable results and the verification with the test data is scheduled.

  • PDF

Effectiveness of Sensitivity Analysis for Parameter Selection in CLIMEX Modeling of Metcalfa pruinosa Distribution

  • Byeon, Dae-hyeon;Jung, Sunghoon;Mo, Changyeun;Lee, Wang-Hee
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.410-419
    • /
    • 2018
  • Purpose: CLIMEX, a species distribution modeling tool, includes various types of parameters representing climatic conditions; the estimation of these parameters directly determines the model accuracy. In this study, we investigated the sensitivity of parameters for the climatic suitability calculated by CLIMEX for Metcalfa pruinosa in South Korea. Methods: We first changed 12 parameters and identified the three significant parameters that considerably affected the CLIMEX simulation response. Results: The result indicated that the simulation was highly sensitive to changes in lower optimal temperatures, lower soil moisture thresholds, and cold stress accumulation rate based on the sensitivity index, suggesting that these were the fundamental parameters to be used for fitting the simulation into the actual distribution. Conclusion: Sensitivity analysis is effective for estimating parameter values, and selecting the most important parameters for improving model accuracy.

전기자동차 배터리 모델링 및 파라미터 최적화 기법 연구 (The Research on the Modeling and Parameter Optimization of the EV Battery)

  • 김일송
    • 전력전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.227-234
    • /
    • 2020
  • This paper presents the methods for the modeling and parameter optimization of the electric vehicle battery. The state variables of the battery are defined, and the test methods for battery parameters are presented. The state-space equation, which consists of four state variables, and the output equation, which is a combination of to-be-determined parameters, are shown. The parameter optimization method is the key point of this study. The least square of the modeling error can be used as an initial value of the multivariable function. It is equivalent to find the minimum value of the error function to obtain optimal parameters from multivariable function. The SIMULINK model is presented, and the 10-hour full operational range test results are shown to verify the performance of the model. The modeling error for 25 degrees is approximately 1% for full operational ranges. The comments to enhance modeling accuracy are shown in the conclusion.