• Title/Summary/Keyword: model-based software testing

Search Result 240, Processing Time 0.028 seconds

Quantitative Reliability Assessment for Safety Critical System Software

  • Chung, Dae-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.386-390
    • /
    • 2007
  • At recent times, an essential issue in the replacement of the old analogue I&C to computer-based digital systems in nuclear power plants becomes the quantitative software reliability assessment. Software reliability models have been successfully applied to many industrial applications, but have the unfortunate drawback of requiring data from which one can formulate a model. Software that is developed for safety critical applications is frequently unable to produce such data for at least two reasons. First, the software is frequently one-of-a-kind, and second, it rarely fails. Safety critical software is normally expected to pass every unit test producing precious little failure data. The basic premise of the rare events approach is that well-tested software does not fail under normal routine and input signals, which means that failures must be triggered by unusual input data and computer states. The failure data found under the reasonable testing cases and testing time for these conditions should be considered for the quantitative reliability assessment. We presented the quantitative reliability assessment methodology of safety critical software for rare failure cases in this paper.

The Comparative Software Reliability Model of Fault Detection Rate Based on S-shaped Model (S-분포형 결함 발생률을 고려한 NHPP 소프트웨어 신뢰성 모형에 관한 비교 연구)

  • Kim, Hee Cheul;Kim, Kyung-Soo
    • Convergence Security Journal
    • /
    • v.13 no.1
    • /
    • pp.3-10
    • /
    • 2013
  • In this paper, reliability software model considering fault detection rate based on observations from the process of software product testing was studied. Adding new fault probability using the S-shaped distribution model that is widely used in the field of reliability problems presented. When correcting or modifying the software, finite failure non-homogeneous Poisson process model was used. In a software failure data analysis considering the time-dependent fault detection rate, the parameters estimation using maximum likelihood estimation of failure time data and reliability make out.

The Bayesian Inference for Software Reliability Models Based on NHPP (NHPP에 기초한 소프트웨어 신뢰도 모형에 대한 베이지안 추론에 관한 연구)

  • Lee, Sang-Sik;Kim, Hui-Cheol;Song, Yeong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.389-398
    • /
    • 2002
  • Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process(NHPP) and performs Bayesian inference using prior information. The failure process is analyzed to develop a suitable mean value function for the NHPP ; expressions are given for several performance measure. Actual software failure data are compared with several model on the constant reflecting the quality of testing. The performance measures and parametric inferences of the suggested models using Rayleigh distribution and Laplace distribution are discussed. The results of the suggested models are applied to real software failure data and compared with Goel model. Tools of parameter point inference and 95% credible intereval was used method of Gibbs sampling. In this paper, model selection using the sum of the squared errors was employed. The numerical example by NTDS data was illustrated.

Human Normalization Approach based on Disease Comparative Prediction Model between Covid-19 and Influenza

  • Janghwan Kim;Min-Yong Jung;Da-Yun Lee;Na-Hyeon Cho;Jo-A Jin;R. Young-Chul Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.32-42
    • /
    • 2023
  • There are serious problems worldwide, such as a pandemic due to an unprecedented infection caused by COVID-19. On previous approaches, they invented medical vaccines and preemptive testing tools for medical engineering. However, it is difficult to access poor medical systems and medical institutions due to disparities between countries and regions. In advanced nations, the damage was even greater due to high medical and examination costs because they did not go to the hospital. Therefore, from a software engineering-based perspective, we propose a learning model for determining coronavirus infection through symptom data-based software prediction models and tools. After a comparative analysis of various models (decision tree, Naive Bayes, KNN, multi-perceptron neural network), we decide to choose an appropriate decision tree model. Due to a lack of data, additional survey data and overseas symptom data are applied and built into the judgment model. To protect from thiswe also adapt human normalization approach with traditional Korean medicin approach. We expect to be possible to determine coronavirus, flu, allergy, and cold without medical examination and diagnosis tools through data collection and analysis by applying decision trees.

The Comparative Study for NHPP Software Reliability Model based on the Property of Learning Effect of Log Linear Shaped Hazard Function (대수 선형 위험함수 학습효과에 근거한 NHPP 신뢰성장 소프트웨어 모형에 관한 비교 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.12 no.3
    • /
    • pp.19-26
    • /
    • 2012
  • In this study, software products developed in the course of testing, software managers in the process of testing software and tools for effective learning effects perspective has been studied using the NHPP software. The log type hazard function applied to distribution was based on finite failure NHPP. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than autonomous errors-detected factor that is generally efficient model could be confirmed. This paper, a failure data analysis of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error and $R^2$(coefficient of determination).

A comparative study on learning effects based on the reliability model depending on Makeham distribution (Makeham분포에 의존한 신뢰성모형에 근거한 학습효과 특성에 관한 비교 연구)

  • Kim, Hee-Cheul;Cheul, Shin-Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.5
    • /
    • pp.496-502
    • /
    • 2016
  • In this study, we investigated the comparative NHPP software model based on learning techniques that operators in the process of software testing and development of software products that can be applied to software test tool. The life distribution was applied Makeham distribution based on finite fault NHPP. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is larger than automatic error that is usually well-organized model could be established. This paper, a trust characterization of applying using time among failures and parameter approximation using maximum likelihood estimation, after the effectiveness of the data through trend examination model selection were well-organized using the mean square error and $R^2$. From this paper, the software operators must be considered life distribution by the basic knowledge of the software to confirm failure modes which may be helped.

A Study on Software Reliability Assessment Model of Superposition NHPP (중첩 NHPP를 이용한 소프트웨어 신뢰도 평가 모형 연구)

  • Kim, Do-Hoon;Nam, Kyung-H.
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.1
    • /
    • pp.89-95
    • /
    • 2008
  • In this paper, we propose a software reliability growth model based on the superposition cause in the software system, which is isolated by the executed test cases in software testing. In particular, our model assumes an imperfect debugging environment in which new faults are introduced in the fault-correction process, and is formulated as a nonhomogeneous Poisson process(NHPP). Further, it is applied to fault-detection data, the results of software reliability assessment are shown, and comparison of goodness-of-fit with the existing software reliability growth model is performed.

A Hybrid Cloud Testing System Based on Virtual Machines and Networks

  • Chen, Jing;Yan, Honghua;Wang, Chunxiao;Liu, Xuyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1520-1542
    • /
    • 2020
  • Traditional software testing typically uses many physical resources to manually build various test environments, resulting in high resource costs and long test time due to limited resources, especially for small enterprises. Cloud computing can provide sufficient low-cost virtual resources to alleviate these problems through the virtualization of physical resources. However, the provision of various test environments and services for implementing software testing rapidly and conveniently based on cloud computing is challenging. This paper proposes a multilayer cloud testing model based on cloud computing and implements a hybrid cloud testing system based on virtual machines (VMs) and networks. This system realizes the automatic and rapid creation of test environments and the remote use of test tools and test services. We conduct experiments on this system and evaluate its applicability in terms of the VM provision time, VM performance and virtual network performance. The experimental results demonstrate that the performance of the VMs and virtual networks is satisfactory and that this system can improve the test efficiency and reduce test costs through rapid virtual resource provision and convenient test services.

Applying Meta-Heuristic Algorithm based on Slicing Input Variables to Support Automated Test Data Generation (테스트 데이터 자동 생성을 위한 입력 변수 슬라이싱 기반 메타-휴리스틱 알고리즘 적용 방법)

  • Choi, Hyorin;Lee, Byungjeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Software testing is important to determine the reliability of the system, a task that requires a lot of effort and cost. Model-based testing has been proposed as a way to reduce these costs by automating test designs from models that regularly represent system requirements. For each path of model to generate an input value to perform a test, meta-heuristic technique is used to find the test data. In this paper, we propose an automatic test data generation method using a slicing method and a priority policy, and suppress unnecessary computation by excluding variables not related to target path. And then, experimental results show that the proposed method generates test data more effectively than conventional method.

Optimal Release Time of Switching Software and Evolution of Reliability Based on Reliability Indicator (신뢰성 평가척도를 중심으로 한 교환 소프트웨어 최적 배포 시기 결정 및 신뢰도 평가)

  • Lee, Jae-Gi;Sin, Sang-Gwon;Hong, Seong-Baek
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.615-621
    • /
    • 1999
  • On the aspect of on-time and development resource use, it is very important to predict the software release time during the software development process. In this paper, we present the optimal release problem based on the evaluation indicator and cost evaluation. And also we show the optimal release point considered with both of them. We applied the Exponential Software Reliability Growth Model(E-SRGM) and Testing-effort dependent Software Reliability Growth Model(Te-SRGM) and decided the software release time according to software reliability indicator. As a result of two models comparison, we verify the Te-SRGM is more adopted in our switching system software.

  • PDF