Abstract
In this study, software products developed in the course of testing, software managers in the process of testing software and tools for effective learning effects perspective has been studied using the NHPP software. The log type hazard function applied to distribution was based on finite failure NHPP. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than autonomous errors-detected factor that is generally efficient model could be confirmed. This paper, a failure data analysis of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error and $R^2$(coefficient of determination).
본 연구에서는 소프트웨어 제품을 개발하여 테스팅을 하는 과정에서 소프트웨어 관리자들이 소프트웨어 및 검사 도구에 효율적인 학습기법을 이용한 NHPP 소프트웨어 모형에 대하여 연구 하였다. 적용모형은 로그 형 위험함수 모형을 적용한 유한고장 NHPP에 기초하였다. 소프트웨어 오류 탐색 기법은 사전에 알지 못하지만 자동적으로 발견되는 에러를 고려한 자동에러탐색요인과 사전 경험에 의하여 세밀하게 에러를 발견하기 위하여 테스팅 관리자가 설정해놓은 요인인 학습효과의 특성에 대한 문제를 비교 제시 하였다. 그 결과 학습요인이 자동 에러 탐색요인보다 큰 경우가 대체적으로 효율적인 모형임을 확인 할 수 있었다. 본 논문의 소프트웨어 고장 자료 분석에서는 고장 간격 시간 자료를 적용하고 모수추정 방법은 최우추정 법을 이용하고 추세분석을 통하여 자료의 효율성을 입증한 후 평균제곱오차와 $R^2$(결정계수)를 이용하여 효율적인 모형을 선택 비교하였다.