DOI QR코드

DOI QR Code

Applying Meta-Heuristic Algorithm based on Slicing Input Variables to Support Automated Test Data Generation

테스트 데이터 자동 생성을 위한 입력 변수 슬라이싱 기반 메타-휴리스틱 알고리즘 적용 방법

  • 최효린 (서울시립대학교 컴퓨터과학과) ;
  • 이병정 (서울시립대학교 컴퓨터과학과)
  • Received : 2017.08.01
  • Accepted : 2017.09.06
  • Published : 2018.01.31

Abstract

Software testing is important to determine the reliability of the system, a task that requires a lot of effort and cost. Model-based testing has been proposed as a way to reduce these costs by automating test designs from models that regularly represent system requirements. For each path of model to generate an input value to perform a test, meta-heuristic technique is used to find the test data. In this paper, we propose an automatic test data generation method using a slicing method and a priority policy, and suppress unnecessary computation by excluding variables not related to target path. And then, experimental results show that the proposed method generates test data more effectively than conventional method.

소프트웨어 테스트는 시스템의 신뢰도를 판단하는 중요한 작업이지만, 많은 노력과 비용이 요구된다. 모델 기반 테스트는 시스템 요구사항을 정형적으로 표현한 모델로부터 테스트 설계를 자동화함으로써 이러한 비용을 줄이기 위한 방안으로 제안되었다. 모델의 각 경로마다 입력값을 생성하여 테스트를 수행하는데, 이 때, 적절한 입력 값을 찾기 위해 메타-휴리스틱 기법을 사용한다. 본 논문은 슬라이싱 기법과 우선순위 정책을 적용한 테스트 데이터 자동 생성 기법을 제안하며, 목적 경로와 관련이 없는 변수를 제외하여 불필요한 계산을 억제한다. 실험을 통해 기존의 기법보다 효과적으로 테스트 데이터를 생성함을 보인다.

Keywords

References

  1. P. C. Jorgensen, "Software Testing: a Craftsman's Approach," CRC press, pp.3-76, 2013.
  2. M. Utting and B. Legeard, "Practical Model - Based Testing: A Tools Approach," Morgan Kaufmann, 2010.
  3. P. R. Srivastava, V. Ramachandran, and M. Kumar, "Generation of test data using meta heuristic approach," TENCON 2008-2008 IEEE Region 10 Conference, pp.1-6, 2008.
  4. D. B. Mishra, R. Mishra, K. N. Das, and A. A. Acharya, "A Systematic Review of Software Testing Using Evolutionary Techniques," In Proc. of Sixth International Conference on Soft Computing for Problem Solving, Singapore, 2017.
  5. McMinn, Phil, "Search-based software test data generation: A survey," Software Testing Verification and Reliability, 2004.
  6. W. Miller, and D. L. Spooner, "Automatic generation of floating-point test data," In Proc. of IEEE Transactions on Software Engineering, Vol.2, No.3, pp.223-226, 1976.
  7. B. Korel, "Automated software test data generation," IEEE Transactions on Software Engineering, pp.870-879, 1990.
  8. E. Diaz, J. Tuya, and R. Blanco, "Automated software testing using a metaheuristic technique based on tabu search," In Proc. of 18th IEEE International Conference on Automated Software Engineering, pp.310-313, 2013.
  9. M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J. Wegener, "The impact of input domain reduction on search-based test data generation," In Proc. of the the 6th Joint Meeting of the European Software Engineering Conference, ACM, 2007.
  10. R. Khan and M. Amjad, "Automatic generation of test cases for data flow test paths using K-means clustering and generic algorithm," International Journal of Applied Engineering Research, Vol.11, No.1, pp.473-478, 2016.
  11. K. Ayari, S. Bouktif, and G. Antoniol, "Automatic mutation test input data generation via ant colony," In Proc. of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1074-1081, 2007.
  12. S. Back, H. Choi, J. W. Lee, and B. Lee, "Evolutionary Test Case Generation from UML-Diagram with Concurrency," In International Conference on Computer Science and its Applications, pp.674-679, 2016.
  13. H. C. Wang, "A hybrid genetic algorithm for automatic test data generation," Master's thesis, Sun Yat-sen University, 2006.
  14. C. C. Michael, G. McGraw, and M. A. Schatz, "Generating software test data by evolution," IEEE Transactions on Software Engineering, Vol.27, No.12, pp.1085-1110, 2001. https://doi.org/10.1109/32.988709
  15. B. F. Jones, H. H. Sthamer, and D. E. Eyres, "Automatic structural testing using genetic algorithms," Software Engineering Journal, Vol.11, No.5, pp.299-306, 1996. https://doi.org/10.1049/sej.1996.0040
  16. F. A. Aderohunmu, G. Paci, and L. Benini, "SWIFTNET: A data acquisition protocol for fast-reactive monitoring applications," SIES 2013 8th IEEE International Symposium, pp.93-96, 2013.
  17. C. C. Michael, G. E. McGraw, M. A. Schatz, "Genetic algorithms for dynamic test data generation," In Proc. of Automated Software Engineering, 12th IEEE International Conference, pp.307-308, 1997.