
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, Apr. 2020 1520
Copyright ⓒ 2020 KSII

A preliminary version of this paper appeared in 2017 Fifth International Conference on Advanced Cloud and Big
Data (CBD), August 13-16, Shanghai, China. This version includes a more detailed introduction, implementation
and analysis on a hybrid cloud testing system. This research was supported by the National Key Research and
Development Program of China (No.2018YFB100360) and Shandong Provincial Natural Foundation
(No.ZR2016FM41).

http://doi.org/10.3837/tiis.2020.04.007 ISSN : 1976-7277

A Hybrid Cloud Testing System Based on
Virtual Machines and Networks

Jing Chen1,2*, Honghua Yan3, Chunxiao Wang1 and Xuyan Liu4

1 Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National
Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences)

Jinan, 250014 - China
[e-mail: jingchen94@163.com]

2 College of Computer Science and Engineering, Shandong University of Science and Technology
Qingdao, 266590 - China

3 Development department, Shandong GreenPower Technology Co., Ltd
Jinan, 250010 - China

[e-mail: sdgrtech@163.com]
4 Network Management Department, China Telecom Corporation Limited, Shandong Branch company

Jinan, 250101- China
[e-mail: liuxuyan77@163.com]

*Corresponding author: Jing Chen

Received April 15, 2019; revised October 14, 2019; accepted February 7, 2020;
published April 30, 2020

Abstract

Traditional software testing typically uses many physical resources to manually build various
test environments, resulting in high resource costs and long test time due to limited resources,
especially for small enterprises. Cloud computing can provide sufficient low-cost virtual
resources to alleviate these problems through the virtualization of physical resources.
However, the provision of various test environments and services for implementing software
testing rapidly and conveniently based on cloud computing is challenging. This paper
proposes a multilayer cloud testing model based on cloud computing and implements a
hybrid cloud testing system based on virtual machines (VMs) and networks. This system
realizes the automatic and rapid creation of test environments and the remote use of test tools
and test services. We conduct experiments on this system and evaluate its applicability in
terms of the VM provision time, VM performance and virtual network performance. The
experimental results demonstrate that the performance of the VMs and virtual networks is
satisfactory and that this system can improve the test efficiency and reduce test costs through
rapid virtual resource provision and convenient test services.

Keywords: cloud testing, cloud computing, TaaS, virtual machine, virtual network

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, April 2020 1521

1. Introduction

Rapid software development and testing are critical for maintaining the competitive
advantage and seizing market opportunities for an enterprise. However, many problems,
such as high test costs [1] and a low test efficiency, are encountered in traditional software
testing. Most small enterprises have too few resources and test tools to build a diverse array
of test environments because they have insufficient funds. Although welfare organizations
can provide various free resources and test tools for small enterprises, most require these
enterprises to use these resources and test tools in limited places and time ranges. Thus, it is
not convenient for enterprises to use free resources and test tools.

Enterprises must spend a substantial amount of money on hardware and software
resources. Moreover, many testers conduct highly repetitive and inefficient manual tests; for
example, they build various test environments, install many test tools and manually
implement tests, which results in the low efficiency of traditional software testing.
Furthermore, existing test tools cannot simulate the real behaviors of user requests due to the
limitations of single nodes and small local area networks (LANs) for the load testing of web
applications. Due to the increasing number of test requirements, to perform comprehensive
software testing quickly, it is becoming increasingly important to automatically deploy
various test environments according to the test requirements and to provide various types of
test tools and online services. The key strategy is to build an effective test system to provide
various test resources, test tools and composite test services based on existing physical
resources, test tools and systems. Cloud computing provides a satisfactory solution to this
problem because it can integrate many physical computing, storage and network resources
into a data center and transform these physical resources into virtual resources using
virtualization technology. Users can realize virtual resources of all types on demand from
cloud computing platforms anywhere and at any time, which reduces not only the resource
cost but also the installation time for the operating system and software. Cloud computing
technology can revolutionize traditional software testing. Enterprises require an automatic
software testing platform that has rich test resources and services to improve test efficiency
and reduce test costs.

Similar to software as a service (SaaS), platform as a service (PaaS) and infrastructure as a
service (IaaS), testing as a service (TaaS) provides test services for handling test activities of
all types on a cloud testing platform. The concept, needs and challenges of TaaS were
proposed in some literatures [2-4]. Manveen Kaur [5] introduced the advantages of cloud
testing, such as cost-effective, faster-testing, easy management and peak load handling, and
new challenges, such as the problems of network congestion, data integrity, data security and
privacy. A survey of TaaS in cloud computing is made to analyze the types, steps and forms
of cloud testing, which mainly focuses on security testing and performance testing of data
integrity, data confidentiality and data availability [6]. Mittal et. al [7] proposed cloud testing
is the future norm of software testing and would provide TaaS for SaaS and clouds. TaaS
platform can use various virtual resources to automatically provide test environments and
support rapid resource provision for massive concurrent testing, inheriting the advantages of
cloud computing technology. Moreover, TaaS can substantially reduce test costs through a
pay-as-you-go model and improve the test efficiency through automatic and on-demand test
services online. Sathe et al. [8] proposed a cost-effective framework for TaaS. Bertolino et al.
[9] proposed an open-source platform ElasTest, which can support the testing for a large and

1522 Chen et al.: A Hybrid Cloud Testing System Based on Virtual Machines and Networks

complex cloud applications, such as web, mobile, network.
Compared with traditional testing, TaaS based on cloud computing can support remote

and distributed testing by test tools, various test configurations and test service semantics by
a large number of resources and services, which can realize the automatic, rapid and
cost-effective testing. Leah et al. [10] studied the adoption and use of cloud testing in various
organizations and found that users made continuous demands for test resources and that the
cloud testing infrastructure can provide various cost-effective solutions to meet users'
demands. Previous studies of cloud testing focused mainly on the creation of test
environments based on cloud resources [11] and automated testing [12]. Recently, the
developed cloud testing platforms typically provide not only test environments but also
various test services. Lo et al. [13] proposed a cloud test environment deployment and
service model; this model can automatically generate test environments for performing tests
and provide test results according to the test scenarios, and testers can define various test
scenarios, including test clients, network and scripts. Cao et al. [14] proposed a hierarchical
model and approach for constructing a software testing platform based on cloud computing.
This platform employs IaaS and PaaS platforms to realize test environment creation and test
project management, respectively. Chiang et al. [15] proposed a browser-based distributed
testing service platform for web service testing. This platform provides elastic test
environments for solving the slow-response problem of single-node testing and simulates
large-scale user requests to test location-based web services using worldwide browsers from
three countries in East Asia, thereby reducing the time and cost required for testing. Yan et al.
[16] proposed a load testing platform of web services, namely, WS-TaaS, which can
simulate massive concurrent requests from geographically distributed test nodes. Compared
with the traditional web testing tool Jmeter on a single node, WS-TaaS achieves a shorter
response time and a lower error ratio for the same number of concurrent requests; however,
its test agents run on PaaS and cannot be fully customized, resulting in limited target services.
Li et al. [17] introduced a cloud testing platform, namely, “Cloud Open Lab”, which can
automatically test and evaluate the features, functionality and performance of cloud systems.
Ding et al. [18] proposed a cloud testing platform that integrates the code coverage testing
tool SAT. This platform can rapidly resize a VM to satisfy the coverage testing requirement
when a massive number of test tasks occur concurrently, thereby reducing the time and cost
required for testing. Although this platform can provide test resources and scale them rapidly
when necessary, its service focuses only on coverage testing based on SAT. Lee et al. [19]
proposed a system that integrates heterogeneous web testing tools into a composite service to
reduce the tester's efforts in load and cross-browser testing. This system can automatically
convert the inputs and outputs of various testing tools, initiate a testing process and send a
compiled test report via email to reduce testers' workloads using the composite web testing
service. The results of an experiment demonstrate that this system can substantially reduce
the test time for load testing and cross-browser testing. Additionally, cloud testing has been
applied in various applications, such as web applications [20], mobile applications [21,22],
multimedia applications [23], bank applications [24], vessel traffic systems [25], Internet of
Things (IoT) [26] and combinatorial testing [27]. Some researchers studied the
infrastructure, needs and test process of mobile testing as a service (MTaaS). Zhang et al.
[28] proposed a function test approach for mobile testing based on TaaS, where test scripts
can be generated automatically to execute the testing. Tao et al. [29] proposed a mobile
testing system MTaaS, compared and discussed mobile TaaS approaches and several
industrial practices. They also analyzed the requirements, issues and challenges in mobile
TaaS. Certainly, not all software testing is adaptable for TaaS. Ali et al. [30] proposed an

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, April 2020 1523

adoption assessment model based on a fuzzy multi-attribute decision making algorithm,
which works in the prediction and assessment modes to support software development
organization (SDO) to decide moving suitable software testing to the cloud. Eid et al. [31]
proposed a mutation-based approach to evaluate the quality of TaaS including the provision
ability of TaaS provider and the successful rating of TaaS using mutation scores. Oliveira et
al. [32] proposed an approach to solve the lock-in problem caused by the lack of portability
and interoperability among TaaS platforms, which uses design patterns and environment
variables to avoid the lock-in problem in TaaS.

Cloud testing platforms provide cloud test services in industry. For example, SOAtest is
Parasoft's testing platform, which provides UI, API, function, load, performance and security
testing [33]. CloudTest is a performance testing tool for website and mobile applications [34].
Sauce Labs provides a platform that supports automated web testing and mobile app testing
[35]. Some testing platforms, such as Xamarin Test Cloud [36], MQC from Alibaba [37],
WeTest from Tecent [38], MTC from Baidu [39] and Testin [40], focus mainly on mobile
testing. However, most of these platforms primarily provide various mobile devices for
testing the function, performance, compatibility and security of mobile applications, but they
do not construct a cloud testing platform based on the users' existing resources and test tools
to automatically create test environments, remotely use test tools, and execute a series of test
activities. And most cloud testing systems concentrate on test environment creation and
some test services provision, which cannot support the whole life-cycle of online software
testing. Two main challenges exist in designing such a cloud testing system. One is the
multi-tenancy problem supporting the third-party independent software vendors (ISVs). A
cloud testing system involves in not only test environments and test tools based on virtual
machines, but also SaaS services from ISVs. The cloud testing system need to support a
large number of users to implement test activities online. Once a user logs on this system, he
can access all test services whatever they are from ISVs or this system. The key problem is
to realize the single sign-on (SSO), which can help users access to a lot of SaaS services of
ISVs. Another is to design a whole life-cycle test process online. A whole life-cycle test
process basically includes test environment preparation, test tools deployment, test
implementation and test management. They involve in different test processes, test
environments and test requirements, which will cause more difficulties to move the offline
test activities to the online cloud testing system and then set up a whole life-cycle test
process. One key issue is to realize network isolation, network connectivity and data
transformation.

This paper extends the findings of our previous study [41], in which we proposed a basic
model and constructed an online software test platform based on cloud computing;
additionally, we performed VM-scale testing to evaluate the capacity of this platform.
However, our previously proposed test platform focuses only on providing rich VMs and test
services to support test activities, whereas the ways in which VMs and virtual networks
support various test scenarios and the performance of a VM and a private virtual network are
not considered. Accordingly, this paper proposes a hybrid cloud testing system that not only
implements TaaS based on VMs and virtual networks but also tests the performance of
virtual resources. In contrast to [41], our new work improves the previous software online
testing system in terms of virtual network management and SaaS access, presents a more
detailed introduction and implementation to our proposed TaaS system, and analyzes the
performance of VMs and private virtual networks. This TaaS system realizes the rapid
creation of test environments and the remote use of test tools and online test services,
thereby enabling users to implement their test activities online. The main components of this

1524 Chen et al.: A Hybrid Cloud Testing System Based on Virtual Machines and Networks

system are discussed. Furthermore, VM provision-time testing, VM performance testing and
virtual network testing are conducted to determine whether they are satisfactory.

2. Background

2.1 Virtual Machine
Virtualization technology can divide a physical computer, a network device and a storage
device into multiple VMs, virtual networks and virtual storage devices, respectively. Two
types of virtualization technologies (hardware virtualization and operating system-level
virtualization) are used in cloud computing. Hardware virtualization can enable multiple
VMs with different operating systems (OSs) to run on a physical server while preserving
their isolation in environments via a hypervisor. A hypervisor, such as XEN, KVM, VMware
EXSi or Hyper-V, is a VM monitor that enables multiple OSs and applications running on
VMs to share the same hardware. A hypervisor also controls the interactions between the OS
of a VM and the hardware of a physical server. Operating system-level virtualization can
enable multiple containers to share the kernel of a physical server but use different user
spaces via kernel partitioning. A container is a lightweight virtualization technology; it uses
fewer resources to serve an application than a VM, which uses more resources to run an
entire operating system. Although containers have more advantages than VMs [42], they are
weaker in terms of security. If a superuser right is illegally obtained from a container, the
underlying operating system may be cracked. Additionally, computer viruses infecting a
container can affect all containers due to the shared OS. A VM is a simulated environment
based on the computer architecture of a physical server, which includes a series of hardware
(CPU, memory, hard disk and network) and software (OS and application) components.
VMs separate applications and OSs from hardware, thereby eliminating the interference not
only between applications of VMs but also between applications and physical hardware. A
VM is less vulnerable than a container because of its better isolation at software level, and its
behavior and functionality are almost the same as those of a physical computer. Different
types of VMs with different OSs can be automatically created and rapidly provided to
end-users from the cloud platform.

2.2 Virtual Network
Network virtualization can establish connections between different applications, services and
users. It can also simulate networks of all types to construct test environments for software
testing. In cloud computing, VMs are combined in a virtual network obtained via network
virtualization. Bridge mode and network address translation (NAT) mode are used in early
network virtualization. Bridge mode connects the virtual network interface card (NIC) to the
physical NIC. Under NAT mode, a VM accesses the public network through the host
network using the NAT service. The OpenStack cloud platform uses Neutron and virtual
switches, such as Open vSwitch (OVS), to generate virtual networks and switches. Neutron,
an OpenStack component, provides "networking as a service" by creating virtual networks,
subnets, ports, switches and routers. OVS is a multilayer virtual software switch that
provides network connections between VMs. Fig. 1 illustrates the traffic flow between two
VMs from different compute nodes on the same virtual network. VM2, which runs on
compute node 1, forwards a packet to the Linux bridge, namely, qbr, and subsequently to the
OVS integration bridge, namely, br-int, and the tunnel bridge, namely, br-tun. Then, the
packet is transmitted from compute node 1 to compute node 2 via the GRE tunnel, and it

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, April 2020 1525

reaches VM1 via br-tun, br-int and qbr on compute node 2. Compared with the VMs on the
same network, a packet from VM1 on compute node 1 and virtual network 1 cannot be
forwarded to VM1 on compute node 2 and virtual network 2 until the route between two
interfaces, namely, qr-1 and qr-2, is set up in the router namespace, namely, qrouter, on the
network node, as shown in Fig. 2, where the qr-1 and qr-2 interfaces separately contain the
virtual network 1 and 2 gateway IP addresses. Fig. 3 illustrates the traffic flow that a VM
accesses internet websites. A VM forwards a packet to compute node NIC via the Linux
bridge, namely, qbr, the OVS integration bridge, namely, br-int, and the tunnel bridge br-tun.
Then, the packet is transmitted to network node NIC via the GRE tunnel. Finally, it accesses
the internet website via OVS, qrouter, OVS external bridge, namely, br-ext and another NIC
on the network node.

Compute node 1

VM1 VM2

Compute node 2

VM1 VM2

GRE Tunnel

Virtual Network 2

Virtual Network 1

Eth0 Eth0

qbrqbrqbr qbr

OVS

br-int

br-tun

OVS

br-int

br-tun

Fig. 1. Traffic flow between two VMs on the same virtual network

Compute node 1

VM1 VM2

Compute node 2

VM1 VM2

GRE Tunnel

Virtual Network 2

Virtual Network 1

Eth0 Eth0

qbrqbr qbr

Network node
Eth0

GRE Tunnel

qbr

OVS
br-int

br-tun

OVS
br-int
br-tun

qrouter
qr-1 qr-2

OVS
br-int

br-tun

Fig. 2. Traffic flow between two VMs on different virtual networks

1526 Chen et al.: A Hybrid Cloud Testing System Based on Virtual Machines and Networks

Compute node 1

VM1 VM2

GRE Tunnel
Eth0

qbr

Network node
Eth0

qbr

OVS
br-int

br-tun

OVS
br-int
br-tun

qrouter

Virtual Network 1

Internet

brt-ext

Eth1

Fig. 3. Traffic flow from a VM to the internet

3. A Hybrid TaaS System based on a Multilayer Model

3.1 Architecture and Model of a Hybrid TaaS System
The basic life cycle of a TaaS system includes test plan setup, test preparation, test
implementation and test result management. A test plan including the information and
scheduling of a test project, is first setup. Then, various test preparations, such as test
environment creation, test tool deployment and test service ordering, are executed.
Furthermore, various test activities, such as code analysis, function testing and performance
testing, are implemented. Finally, bugs are submitted to the management module of the TaaS
system. Our hybrid TaaS system illustrated in Fig. 4 provides three main functions based on
VMs and virtual networks: automatic creation of various test environments, remote use of
test tools, and online test services. These components are independent and can be easily
assembled according to a user's existing resources. Test targets can be deployed on either
VMs provided by this TaaS system or users' own machines. The test environments refer to
the runtime environments of test clients or test targets. For example, "Windows 7.0" and
"Microsoft Office 2013" are basic running environments of test clients. "Tomcat 7.0" is
installed on a VM with OS "Ubuntu Server 14.04" to run a website. The runtime software
can be integrated into an image. Thus, a test environment can be built automatically when a
VM is created. The remote use of a test tool is realized similarly by integrating a test tool
into an image and using this image to create a VM with the test tool. An enterprise customer
can create various VMs with different virtual networks, test environments and test tools and
further deploy test cases and test scripts on these VMs to implement test activities.
Additionally, the user can remotely use test services, such as code analysis and performance
testing services, to test the application regardless of whether it runs on this TaaS system or
on a personal machine. Test bugs can be saved and managed using the bug management

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, April 2020 1527

service. Finally, test environments can be removed automatically or manually, and test
reports and data can be collected and downloaded from this system after the test has finished.

Virtual Network 1

Test Target of Enterprise A

Application 1 Application 2

Enterprise A

Tester

Tester Test Scripts

Test Cases
Delivery

Test Environment Test Tool

Virtual Network 2

Images:
OS:Windows7/Ubuntu14.04/...
DB:Mysql5.6/SQLServer2008/....
Software:Tomcat7.0/IIS7/...
Test Tools: Fortify/Appscan/...

Apply

Online Test Services (SaaS Platform)

Code Analysis Performance Testing

Test Environment Test Tool

Enterprise B
Apply

Delivery

Application 1 Application 2

Test Target of Enterprise B

TE1 TE2 TT1

VM1 VM2 VM3

VM4 VM5 VM6
Tester

Tester Test Scripts

Test Cases

TE1 TE2 TT1

 Bug Management

Use

Use

Fig. 4. Architecture of a hybrid TaaS system

Fig. 5 illustrates the multilayer model of a TaaS system. There are four layers: physical

layer, IaaS layer, SaaS layer and portal layer. The physical layer integrates various compute,
storage and network resources from different places into a pool to support virtual resource
provision on an IaaS platform. The IaaS platform virtualizes physical servers and networks
using virtualization techniques and manage all physical and virtual resources. The controller
node manages all other physical nodes. A storage node stores the images and disks of VMs.
A compute node runs various VMs. A network node sets up the communication between two
VMs from different compute nodes. Various VMs and virtual networks can be provided
based on this IaaS platform. The SaaS platform provides the access specifications of SaaS
services. These SaaS services can be deployed on either the servers of the ISVs or the VMs
of the IaaS platform. ISVs need to modify their SaaS services according to these access
specifications. The modified SaaS services are released on this platform by submitting their
information and launching them as SaaS service products. The service portal provides the
services of test environment, test tool, performance testing, code analysis and bug
management. These services are supported by the resources of the IaaS and SaaS platforms.
The management portal provides resource management, order management, service
management, enterprise management and ISV management services to help administrators
maintain the TaaS system. We use this model to build an online software testing platform
based on cloud computing to realize basic test activities in traditional software testing, such

1528 Chen et al.: A Hybrid Cloud Testing System Based on Virtual Machines and Networks

as the automatic creation of test environments, the remote use of test tools and the use of
online test services.

Code Analysis
Service

Bug Management
Service

Performance
Testing Service

Open vSwitch

VM5VM1 VM2

Virtual Network 1

VM3 VM4

Virtual Network 2

VM6

Virtual Network 3

Open vSwitch

IaaS
Layer

Physical
Layer

SaaS
Layer

Portal
Layer

Service Portal Management Portal
Test Environment

Bug
Management

Test Tool

Code
Analysis

Performance
Testing

Console

Resource
Management

Order
Management

Service
Management

Enterprise
Management

ISV
Management

Open vSwitch

Controller/Storage
Node Network Node

Compute Node Compute Node

Compute
Virtualization

Network
Virtualization

Storage
Virtualization

Role
Management

Internet

Fig. 5. A multilayer model of a TaaS system

3.2 Main Components of a Hybrid TaaS System
(1) IaaS Platform
We use an open source software, namely, OpenStack [43], and the KVM virtualization
technique to build an IaaS platform. This platform provides various resources and services
based on different components of OpenStack, such as keystone, nova, glance, neutron and
cinder. Keystone provides identity, authentication and access management; it authenticates
users and determines which resources users have the authority to access. Nova provides VMs
and manages their lifecycles by calling the libvirt application programming interface (API).
Glance provides an image service that can discover, register, and retrieve VM images.
Cinder provides a block storage service that provides volumes to VMs. Neutron provides a
network connectivity service between interface devices (e.g., virtual network interface cards).
These components provide VMs and virtual networks that support the TaaS system by
interacting with each other. VMs with different operating systems are created based on
images of various types, such as Ubuntu, CentOS, and Windows. In addition, private virtual
networks are provided to ensure the isolation of test environments for different enterprises.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, April 2020 1529

(2) SaaS Platform
Many test services are developed as SaaS services that can be integrated into the TaaS
system. SaaS service access involves service deployment, configuration and management.
SaaS services from ISVs can be deployed on VMs of the IaaS platform, whose resources can
be rapidly increased or reduced in response to load changes in the testing process. We
develop a service management function to provide the configuration and management of
SaaS services and solutions. A SaaS service must satisfy the following conditions before it
can be accessed by the TaaS system:

(a) It must be a B/S structure. Users can access this service via browsers.
(b) It must support multiple tenants and separate applications and data for different

tenants.
(c) It should be chargeable, and its charging strategy should be submitted to this TaaS

system.

ISV Information
Creation

Service Test

Service
Modification

Service Online

Solution Creation

Solution Release

Content Creation

Content Audit

Content Release

Service Solution

Solution Order

Order Audit

Solution Provison

Solution Expires

Service Offline

Service Closing

Solution Closing

Order

Fig. 6. Process of a SaaS service accessing a TaaS System

Fig. 6 illustrates the process of integrating a SaaS service from an ISV into the TaaS
system. First, the ISV and SaaS service information is created, which involves “ISV ID”,
“Log Account”, “Key”, and “SaaS Service Number”, etc. Second, the SaaS service must be
modified according to the service access specifications of this TaaS system, including the
modification of functions and interfaces. Function modification mainly focuses on deleting
the overlapping functions between the TaaS system and this SaaS service, such as user
management, role management, SSO and password modification. Interface modification
mainly includes the service ordering, user authorization, role synchronization, SSO
authentication and SSO heartbeat keeping interfaces. These interfaces must comply with the
specifications of the web service and the TaaS system. The simple object access protocol
(SOAP) and post page are used to transform messages and transfer data between the
interfaces of the TaaS system and the ISV's SaaS services. Third, the SaaS service is tested
in a sandbox after its modification has been completed. Fourth, the SaaS service is integrated
into the TaaS system and is online. Fifth, one or more services are combined into a solution

1530 Chen et al.: A Hybrid Cloud Testing System Based on Virtual Machines and Networks

for release. Sixth, the content of the solution is created, audited and released. Thus, the
solution with this SaaS service can be online, ordered and used. If the solution expires, it will
be closed. The corresponding SaaS services can be offline and closed.
(3) Service and Management Portals

The service and management portals are developed by using .NET. Some of their services
are presented in Fig. 5. The service portal mainly provides online test environments, test
tools and test services such as code analysis, performance testing and bug management.
Users can use and manage their resources and services via their consoles. All resources and
services can be obtained anywhere and at any time if users log into this TaaS system. A test
environment is presented as one or more VMs with operating systems, clients, network
topologies, and test scripts. In contrast to development environments, test environments must
remain independent and isolated for different enterprises, which has an advantage in terms of
the creation of independent and isolated test environments based on cloud computing.
Various test environments can be constructed in batches using different VM images and
virtual networks. Each enterprise has its own virtual network, thereby guaranteeing the
isolation and privacy of the test environment. Enterprise data can also be isolated by
separating different users and projects in OpenStack. If two VMs from different enterprises
(tenants) communicate with each other, their private virtual networks should connect with
the external network via their own routers, as illustrated in Fig. 7. For example, VM1 of
tenant A forwards packets to VM1 of tenant B via tenant A's private virtual network and
router, the external network, and tenant B's virtual router and network, sequentially. A test
tool is also provided in VM mode and used remotely. Additional VMs can be rapidly
provided when the resource utilization of a test environment or a test tool is overloaded. Test
services from ISVs are integrated into this TaaS system and provided in the SaaS platform.
Among these test services, the performance testing service can test a web application in
parallel to shorten the test time regardless of whether this application is deployed on a user's
server or on a VM of the TaaS system.

Tenant A
VM1

50.0.0.4
3.0.0.2

Tenant A
VM2

50.0.0.5
3.0.0.3

Tenant A
Router

Tenant B
VM1

50.0.0.6
4.0.0.2

Tenant B
VM2

50.0.0.7
4.0.0.3

Tenant B
Router

Tenant B
VM4

50.0.0.9
5.0.1.3

Tenant B
VM3

50.0.0.8
5.0.1.2

External Network
50.0.0.0/22

Physical Router

50.0.0.1

50.0.0.2 50.0.0.3

Tenant B-Private
Network1
4.0.0.0/24

Tenant B-Private
Network2
5.0.1.0/24

Tenant A-Private
Network

3.0.0.0/24
3.0.0.1 4.0.0.1 5.0.1.1

Fig. 7. Communication between different private networks

The management portal provides many management functions, such as enterprise
management, resource management, service management, order management, and ISV
management, as illustrated in Fig. 8. Enterprise management refers to the management of the
information of enterprises and enterprise employees. Resource management refers to the
management of various physical and virtual resources, including physical hosts, VMs,
images, flavors, virtual networks and routers. Service management mainly refers to the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, April 2020 1531

management of solutions, contents and SaaS services, such as code analysis, performance
testing and bug management. These SaaS services and relevant supporting systems, such as
Jmeter and Sonar, are deployed on VMs. Order management refers to the management and
audit of all orders and the handling of abnormal orders. Users cannot obtain or use resources
or services until the order is approved.

Fig. 8. Management portal

4. Experimental Setup and Results
A key objective of a TaaS system is to provide test resources and test services in an
automatic and convenient manner. We implement a TaaS system based on a cloud platform,
which includes 4 physical nodes (1 controller node, 1 network node and 2 compute nodes).
This TaaS system provides not only the automatic creation and remote use of test
environments and test tools based on VMs and virtual networks but also online test services,
such as performance testing based on open source software Jmeter, code analysis based on
open source software Sonar and bug management, as illustrated in Fig. 9.

Fig. 9. Test services

1532 Chen et al.: A Hybrid Cloud Testing System Based on Virtual Machines and Networks

In addition, tenants and ISVs in this system have two roles: ISVs provide and release their
test services on the TaaS system, and tenants can order test resources and use these test
services to implement their test tasks. The TaaS system automatically provides various test
resources and test services. For instance, tenants can order test environments in which to
deploy the systems being tested, as illustrated in Fig. 10(a), and apply test tools, such as
Fortify and Appscan, or test services, such as performance testing and code analysis, to test
these systems, as illustrated in Fig. 10(b)-10(d). Tenants can also install their own test agents
or test scripts on test environments to test the systems deployed on their local machines.
These features provide convenient test services to enterprises and accelerate their test
processes. Furthermore, smooth operation and management are realized, thereby improving
the maintenance efficiency.

(a) Test environment ordering (b) Test plan for performance testing

(c) Results of performance testing (d) Results of code analysis

Fig. 10. Partial functions of our TaaS system

Another objective is to rapidly provide test resources and ensure that they have good
performance. To evaluate the performance of our TaaS system in practice, we implement
three experiments: VM provision-time testing, VM performance testing and virtual network
testing.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, April 2020 1533

4.1 VM Provision-Time Testing
A TaaS system must provide many VMs to support various test activities quickly. We
perform large-scale VM testing to evaluate the resource provision performance of our system.
This testing approach adopts a VM image, namely, "CentOS Server 6.5", and selects a
1CPU2G20G flavor with 1 core CPU, 2 GB memory and 20 GB disk. Because each compute
node has only a 600 GB disk, the maximum number of VM requests is only 45 in theory,
excluding the occupation volume of the operating systems, software and VM files of the two
compute nodes. We perform testing for 10, 20, 30, and 45 VM requests and present the
results in terms of the VM provision time in Fig. 11. A VM is typically provided within the
range [50 s, 120 s]. Moreover, the provision time increases gradually with an increase in the
number of VM requests. For instance, the average provision time of a VM is only 54.4 s if
there are 10 VM requests; however, it increases up to 61.45 s, 85.7 s, and 101.2 s when there
are 20, 30, and 45 VM requests, respectively. The same phenomenon is observed for the
maximum and minimum provision times. The standard deviation also exhibits this trend
because VM provision becomes less stable with an increase in the number of VM requests.
Although the provision time of a VM increases with the number of VM requests, it is
substantially reduced compared with the traditional approach, which often requires tens of
minutes to set up test environments manually.

10 20 30 45
0

40

80

120

160

Pr
ov

is
io

n
tim

e(
s)

Number of requested VMs

 Maxinum provision time
 Mininum provision time
 Average provision time
 Standard deviation

Fig. 11. Provision times of VMs

4.2 VM Performance Testing
We use an open source software, namely, "UnixBench" [44], to test the performance of the
VMs from our TaaS system, Alibaba Cloud and QingCloud platforms. These VMs have the
same image of OS "Ubuntu Server 14.04.5" and different flavors with 2CPU4G20G and
4CPU8G50G. We test each VM three times. Although the results of each test differ for each
VM, the fluctuation is within a small range and does not affect the overall comparison. The
system benchmark index scores of all VMs are listed in Table 1. Our VMs obtain scores that
are near or over 1000; hence, the VMs perform well in this test. However, the performance

1534 Chen et al.: A Hybrid Cloud Testing System Based on Virtual Machines and Networks

of most VMs from Alibaba Cloud and QingCloud are approximately 1.5 times those of ours.
We further compare the index scores of individual test items for these VMs, as shown in
Table 2, where all index scores are relative values obtained by comparing the test results
with the baseline values. The VMs from our TaaS system outperform those from other cloud
platforms on test items "Dhrystone" and "Whetstone", which indicates our VMs have a
certain advantage in string handling and floating-point operations at that time. However, our
VMs fall behind other VMs on other test items, such as file copying, execl throughput, pipe
throughout, pipe-based context switching, shell scripts, process creation and system call
overhead.

Table 1. VM performance of various cloud platforms
VMs 2CPU4G20G 4CPU8G50G

Source VM flavor type
2 CPUs,
1 parallel
process

2 CPUs, 2
parallel
processes

VM flavor type
4 CPUs,1
parallel
processes

4 CPUs, 4
parallel
processes

TaaS
system general type 1004 1561 general type 934 2396

Alibaba
Cloud ecs.n1.medium 1007 2052 ecs.n1.large 1075 3216

Alibaba
Cloud ecs.sn1.medium 1452 2600 ecs.c5.xlarge 1444 3343

QingCloud basic type 1405 2316 basic type 1511 3315

QingCloud enterprise type 1487 2331 enterprise type 1914 3631

Table 2. Index scores of individual test items
 2CPU4G20G (2 CPUs; 2 parallel processes) 4CPU8G50G (4 CPUs; 4 parallel processes)

Cloud platform TaaS
system Alibaba Cloud QingCloud TaaS

system Alibaba Cloud QingCloud

VM type general
type

ecs.n1.
medium

ecs.sn1.
medium

basic
type

enterprise
type

general
type

ecs.n1
.large

ecs.c5.
xlarge

basic
type

enterprise
type

Dhrystone 2
using register
variables

5054 4151 5794 4966 4803 9884 8798 7015 9731 11854

Double-precisi
on whetstone 1631 1253 1464 1355 1582 3205 2560 2505 2684 2903

Execl
throughput 1313 1685 2102 1582 1643 2175 2821 3015 2913 3398

File copy 1024
bufsize 2000
maxblocks

1465 2204 2480 2008 2036 1361 1949 2250 1986 1691

File copy 256
bufsize 500
maxblocks

966 1410 1673 1512 1492 951 1417 1440 1199 1228

File copy 4096
bufsize 8000
maxblocks

2961 3953 4894 3970 3660 2903 4133 4587 3476 3514

Pipe
throughput 1356 2312 2917 2990 2917 2618 4929 4117 5834 7088

Pipe-based
context
switching

648 1138 1491 1605 1625 1156 2161 2111 2538 3289

Process
creation 1072 1462 1757 1393 1323 1576 1861 1911 2229 2474

Shell scripts (1
concurrent) 1873 2886 4095 3243 3362 3536 5577 6089 5532 6932

Shell scripts (8
concurrent) 2495 2570 3660 2941 2996 4488 5055 5433 5274 6774

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, April 2020 1535

System call
overhead 1045 1815 2302 2905 2932 1831 3023 4499 2898 2269

System
benchmarks
index score

1561 2052 2600 2316 2331 2396 3216 3343 3315 3631

Additionally, we implement a benchmark test to obtain the "copy" memory bandwidth
available to these VMs. The test results are listed in Fig. 12(a)-12(b). The memory
bandwidths of our VMs are larger than those of other VMs except in the MEMCPY test for
the flavor 2CPU4G20G. The larger the memory bandwidth is, the higher the VM
performance at that time.

MEMCPY DUMB MCBLOCK
0

2000

4000

6000

8000

"C
op

y"
 m

em
or

y
ba

nd
w

id
th

(M
iB

/s)

(a) 2CPU4G20G

 TaaS-general type
 Alibaba cloud-ecs.n1.medium
 Alibaba cloud-ecs.sn1.medium
 QingCoud-basic type
 QingCloud-enterprise type

MEMCPY DUMB MCBLOCK
0

2000

4000

6000

8000

"C
op

y"
 m

em
or

y
ba

nd
w

id
th

(M
iB

/s)

(b) 4CPU8G50G

 TaaS-general type
 Alibaba cloud-ecs.n1.large
 Alibaba cloud-ecs.c5.xlarge
 QingCoud-basic type
 QingCloud-enterprise type

Fig. 12. "Copy" memory bandwidth

1536 Chen et al.: A Hybrid Cloud Testing System Based on Virtual Machines and Networks

4.3 Virtual Network Testing
In this experiment, we measure the real-time bandwidths of the virtual network and the
physical network. Then, we measure the average round-trip times (RRTs) from a VM and a
physical node of our cloud platform to domestic and foreign websites. Finally, we create two
groups of VMs according to their network topologies on which to perform RRT tests.

Fig. 13 presents the real-time bandwidths of the virtual and physical networks in the
internal network and internet connection tests. We use Linux "iperf" and "speedtest" tools to
implement the internal network bandwidth and the internet connection bandwidth
measurements, respectively. The uplink and downlink network bandwidths for the virtual
network are lower than those for the physical network. The uplink and downlink network
bandwidths between two VMs based on the same virtual network are slightly lower than
those between two physical nodes (PNs) based on the same physical network. The uplink
and downlink network bandwidths between two VMs based on the same virtual network are
937 Mb/s and 921 Mb/s, respectively, while those between two PNs based on the same
physical network are 941 Mb/s and 933 Mb/s, respectively; the differences between them are
very small. However, their differences increase in the internet connection bandwidth tests.
We use "speedtest" tool to test the network bandwidth from one client to the nearest
speedtest server on internet. The virtual network has an uplink network bandwidth of only
85.58 Mb/s, which is slightly lower than the bandwidth of 92.89 Mb/s of the physical
network; however, it has a downlink network bandwidth of only 62.40 Mb/s, which is far
lower than the bandwidth of 91.82 Mb/s of the physical network in the internet connection
tests. Although the virtual network performance is slightly lower than the physical network
performance, it is acceptable.

upload link download link
0

200

400

600

800

1000

1200

N
et

w
or

k
ba

nd
w

id
th

(M
b/

s)

 Two VMs on the same virtual network
 Two PNs on the same physical network
 One VM access to the nearest speedtest server
 One PN access to the nearest speedtest server

Fig. 13. Network bandwidth testing

We use the Linux "ping" command to measure the round-trip time (RTT) from a VM to an

internet website. Fig. 14 presents the average round-trip times (RTTs) that a packet travels

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, April 2020 1537

from a VM to websites and back again 100 times. The average RTTs to the domestic
websites, such as baidu.com and 163.com, are within 21 ms. However, those to foreign
websites all exceed 48 ms, and some even exceed 200 ms, e.g., oracle.com and github.com.
In addition, the average RTTs from the VM to internet websites all exceed those from a PN
to websites, mainly because a packet from a VM travels multiple bridges to the physical
network interface card (NIC) of the compute node running this VM and subsequently travels
to the network node and accesses internet websites through its physical NIC, as illustrated in
Fig. 3. Therefore, the access to internet websites by a VM is always slower than that by a PN;
however, the difference is small.

16.76 20.05

54.99

240.13
247.41

185.85

15.27 19.71

48.67

223.45

244.88

173.6

baidu.com 163.com java.com oracle.com github.com sourceforge.net
0

50

100

150

200

250

R
TT

(m
s)

 VM PN

Fig. 14. RTTs of pinged websites

To analyze the performance of a virtual network, we construct virtual and physical
networks of various topologies and prepare two groups of VMs and two groups of PNs,
respectively, for the RTT tests. One group has two VMs on the same private virtual network;
another group has two VMs on different private virtual networks. Similarly, we prepare two
groups of PNs on the same physical network and different physical networks. Fig. 15 shows
the average RTTs between VMs and those between PNs for various packet sizes. The
average RTTs between two PNs are all lower than those between VMs. Hence, the virtual
network has a transmission latency due to the bridges between the virtual NIC and the
physical NIC. The PNs on different networks show lower transmission performance than
those on the same network, which may be due to the transmission latency between networks
through a router. Their difference increases very slowly with an increase in the packet size.
However, a different trend is observed in the RTT tests between VMs. The average RTTs
between VMs on different networks are higher than those between VMs on the same
network, and their difference increases with an increase in the packet size. For instance,

1538 Chen et al.: A Hybrid Cloud Testing System Based on Virtual Machines and Networks

when we use the 64-byte packet from one VM to ping another VM, the average RTT
between them is 1.841 ms, which corresponds to a 31% performance drop compared with the
average RTT of 1.406 ms between two VMs on the same network. Furthermore, the average
RTT between VMs on the same network increases from 1.406 ms to 4.597 ms if the packet
size is increased from 64 bytes to 40960 bytes, whereas the average RTT between VMs on
different networks increases from 1.841 ms to 10.359 ms. The data transmission latency
increases as expected when the packet size increases. However, the performance degrades
substantially with an increase in the packet size. The performance drops by 125.34% for a
40960-byte packet. These phenomena may correspond to issues in the transmission of big
data on different private virtual networks.

-5000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

0

2

4

6

8

10

12

R
TT

 (m
s)

packet size (byte)

 VMs on the same network VMs on different networks
 PNs on the same network PNs on different networks

Fig. 15. RTT test between two VMs

5. Validity
The threat to validity is mainly related to VMs. In this paper, the VMs are from different
cloud platforms, such as Alibaba Cloud, QingCloud and our private TaaS system. These
cloud platforms use physical servers that differ in terms of their properties and performance.
VMs with different resource configurations differ in terms of performance. VMs from
different cloud platforms also differ in terms of performance, even though they have the
same resource configuration. Moreover, the performance of a VM may vary over time. We
create two types of VMs for the same resource configuration from Alibaba Cloud and
QingCloud. For example, we create two VMs that have the same resource configuration (i.e.,
2CPU4G20G) and different flavors (i.e., “ecs.n1.medium” and “ ecs.sn1.medium”) on the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, April 2020 1539

Alibaba Cloud. Two VMs that have the same resource configuration (i.e., 2CPU4G20G) and
different types of flavors (i.e., “basic type” and “enterprise type”) are created on the
QingCloud platform. Our TaaS system provides only a general type of VM. These VMs are
created at different moments. The performance testing for these VMs demonstrates only their
performance at that time, and the test results reflect the real-time performance of the VMs at
that time. Although the performance of a VM is not fixed, the results of performance testing
reflect the real-time characteristics of the VM and can be compared with the results of other
VMs. The test results can differ slightly over time and among batches of VMs. Additionally,
we only compare four specific types of VMs from Alibaba Cloud and QingCloud with those
from our TaaS system, respectively. More different VMs from these platforms need to be
further tested in the future.

6. Conclusion
Traditional software testing suffers from high resource costs and long test times due to
limited resources and manual test activities. Cloud computing can rapidly provide many
low-cost resources to alleviate these problems. In this paper, we propose a multilayer cloud
testing model based on cloud computing and implement a hybrid TaaS system based on VMs
and virtual networks. This TaaS system integrates the IaaS platform and the SaaS platform to
support the automatic and rapid creation of test environments and the remote use of test tools
and online test services; in addition, this system provides service and management portals for
easily managing test resources and test services. In addition to function demonstration, we
evaluate this TaaS system experimentally in terms of the VM provision time, VM
performance and virtual network performance and compare the experimental results with
those from Alibaba Cloud and QingCloud platforms. The results demonstrate that our VMs
and virtual networks perform well and can satisfy testers' basic demands. This TaaS system
can provide low-cost resources and convenient test services and accelerate the testing
process, thereby reducing testing costs and improving the testing efficiency. Furthermore,
the proposed system can realize smooth operation and management, improving the
maintenance efficiency. Therefore, this system is cost effective in practical software testing.
However, our VM performance is not as good as those from Alibaba Cloud and QingCloud
in most test items; hence, we must improve our system in future work.

References
[1] Q. Li, D. L. Ke, and X. L. Wang, "Brief survey on cloud testing," Application Research of

Computers, vol. 29, no. 12, pp. 4401-4406, December, 2012. Article (CrossRef Link)
[2] J. Gao, X. Bai, W.-T. Tsai, "Testing as a service (TaaS) on clouds," in Proc. of IEEE 7th

International Symposium on Service-Oriented System Engineering (SOSE), pp. 212-223, March
25-28, 2013. Article (CrossRef Link)

[3] S. Jain, D. Srivastava, "Testing as a service (TaaS) on cloud: needs and challenges," International
Journal of Advanced Research in Computer Science & Technology, vol. 2, no. 2, pp. 335-340,
April-June, 2014. Article (CrossRef Link)

[4] A. Bertolino, L. Nautiyal and P. Malik, "Annotated buzzwords and key references for software
testing in the cloud," in Proc. of IEEE International Conference on Computing, Communication
and Automation, pp. 893-900, May 5-6, 2017. Article (CrossRef Link)

[5] M. Kaur, "Testing in the cloud: new challenges," in Proc. of IEEE International Conference on
Computing, Communication and Automation, pp. 742-746, April 29-30, 2016.
Article (CrossRef Link)

http://dx.doi.org/doi:10.3969/j.issn.1001-3695.2012.12.001
http://apps.webofknowledge.com/OutboundService.do?SID=6AxFKRwkmjJMmR1Yyro&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=35143
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6AxFKRwkmjJMmR1Yyro&page=1&doc=2
http://dx.doi.org/doi:10.1109/SOSE.2013.66
http://ijarcst.com/doc/vol2-issue2/ver.2/shivam_jain.pdf
http://apps.webofknowledge.com/OutboundService.do?SID=6AxFKRwkmjJMmR1Yyro&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=445214
http://apps.webofknowledge.com/OutboundService.do?SID=6AxFKRwkmjJMmR1Yyro&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=23967949
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6AxFKRwkmjJMmR1Yyro&page=4&doc=38
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6AxFKRwkmjJMmR1Yyro&page=4&doc=38
https://doi.org/10.1109/CCAA.2017.8229933
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6AxFKRwkmjJMmR1Yyro&page=7&doc=64
http://dx.doi.org/doi:10.1109/CCAA.2016.7813826

1540 Chen et al.: A Hybrid Cloud Testing System Based on Virtual Machines and Networks

[6] P. Harikrishna and A. Amuthan, "A survey of testing as a service in cloud computing," in Proc.
of 2016 international conference on computer communication and informatics (ICCCI), pp. 1-5,
January 7-9, 2016. Article (CrossRef Link)

[7] V. Mittal, L. Nautiyal and M. Mittal, "Cloud testing-the future of contemporary software
testing," in Proc. of International Conference on Next Generation Computing and Information
Systems (ICNGCIS), pp. 131-136, December 11-12, 2017. Article (CrossRef Link)

[8] A. S. Sathe, R. Kulkarni, "Study of testing as a service (Taas) –cost effective framework for taas
in cloud environment," International Journal of Application or Innovation in Engineering &
Management, vol. 2, no. 5, pp. 240-243, May 2013. Article (CrossRef Link)

[9] A. Bertolino, A. Calabro, D. A. Guglielmo, et al, "When the testing gets tough, the tough get
ElasTest," in Proc. of 40th ACM/IEEE International Conference on Software Engineering
(ICSE), pp. 17-20, May 27-June 3, 2018. Article (CrossRef Link)

[10] L. Riungu-Kalliosaari, O. Taipale, K. Smolander and I. Richardson, "Adoption and use of
cloud-based testing in practice," Software Quality Journal, vol. 24, no. 2, pp. 337-364, October,
2016. Article (CrossRef Link)

[11] T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, T. Hanawa and M. Sato, "D-cloud: design of a
software testing environment for reliable distributed systems using cloud computing
technology," in Proc. of 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, pp. 631-636, May 17-20, 2010. Article (CrossRef Link)

[12] A. Gambi, W. Hummer and S. Dustdar, "Automated testing of cloud-based elastic systems with
AUToCLES," in Proc. of 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 714-717, November 11-15, 2013. Article (CrossRef Link)

[13] W. T. Lo, R. K. Sheu, S. M. Yuan and G.-H. Luo, "Automatic test environment deployment and
service testing model in the cloud," Journal of Internet Technology, vol. 17, no. 3, pp. 599-607,
May, 2016. Article (CrossRef Link)

[14] L. Cao, Y. Jiang, C. M. Gan, Y. C. Zhang and G. Q. Chen, "Construction of software testing
platform on cloud computing," New Technology of Library and Information Service, vol. 11, pp.
34-39, November, 2012. Article (CrossRef Link)

[15] C. Chiang, C. Chang, H. Chen, Y. Chen, S. Yuan and C. Wang, "ATP: a browser-based
distributed testing service platform," International Computer Symposium, pp. 192-197,
December 15-17, 2016. Article (CrossRef Link)

[16] M. Yan, H. Sun, X. Wang and X. Liu, "Building a TaaS platform for web service load testing,"
in Proc. of IEEE International Conference on Cluster Computing, pp. 576-579, September 24-28,
2012. Article (CrossRef Link)

[17] C. Li and H. Shih, "A cloud testing platform and its methods based on essential cloud
characteristics," in Proc. of International Conference on Machine Learning and Cybernetics
(ICMLC), pp. 163-169, July 12-15, 2015. Article (CrossRef Link)

[18] X. P. Ding, H. Hou, S. He, Z. G. Chen and D. H. Guo, "Performance study of cloud testing
platform based on openstack," Software, vol. 36, no. 1, pp. 6-10, March, 2015.
Article (CrossRef Link)

[19] S. Lee, Y. Lin, K. Lin and J. You, "Composing and delivering heterogeneous web testing
software as a composite web testing service," International Computer Symposium (ICS), pp.
605-610, December 15-17, 2016. Article (CrossRef Link)

[20] X. Xu, H. Jin, S. Wu, L. Tang and Y. Wang, "URMG: enhanced CBMG-based method for
automatically testing web applications in the cloud," Tsinghua Science and Technology, vol. 19,
no. 1, pp. 65-75, February, 2014. Article (CrossRef Link)

[21] C. Tao and J. Gao, "Cloud-based mobile testing as a service," International Journal of Software
Engineering and Knowledge Engineering, vol. 26, no. 1, pp. 147-152, 2016.
Article (CrossRef Link)

[22] D. Tao, Z. Lin and C. Lu, "Cloud platform based automated security testing system for mobile
internet," Tsinghua Science and Technology, vol. 20, no. 6, pp. 537-544, December, 2015.
Article (CrossRef Link)

http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6AxFKRwkmjJMmR1Yyro&page=7&doc=70
https://doi.org/10.1109/ICCCI.2016.7479949
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6AxFKRwkmjJMmR1Yyro&page=5&doc=43&cacheurlFromRightClick=no
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6AxFKRwkmjJMmR1Yyro&page=5&doc=43&cacheurlFromRightClick=no
https://doi.org/10.1109/ICNGCIS.2017.11
https://ijaiem.org/Volume2Issue5/IJAIEM-2013-05-26-060.pdf
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=6DsZiy2erGD17Fn6S9q&author_name=Bertolino,%20Antonia&dais_id=445214&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=6DsZiy2erGD17Fn6S9q&author_name=Calabro,%20Antonello&dais_id=30361213&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=6DsZiy2erGD17Fn6S9q&author_name=De%20Angelis,%20Guglielmo&dais_id=2821183&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6DsZiy2erGD17Fn6S9q&page=2&doc=18
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6DsZiy2erGD17Fn6S9q&page=2&doc=18
https://doi.org/10.1145/3183440.3183497
https://doi.org/10.1007/s11219-014-9256-0
https://doi.org/10.1109/CCGRID.2010.72
https://doi.org/10.1109/ASE.2013.6693140
http://dx.doi.org/doi:10.6138/JIT.2016.17.3.20151110e
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2012.11.06
https://doi.org/10.1109/ICS.2016.0046
https://doi.org/10.1109/CLUSTER.2012.20
https://doi.org/10.1109/ICMLC.2015.7340916
http://en.cnki.com.cn/Article_en/CJFDTotal-RJZZ201501002.htm
https://doi.org/10.1109/ICS.2016.0124
https://doi.org/10.1109/TST.2014.6733209
https://doi.org/10.1142/S0218194016500078
https://doi.org/10.1109/TST.2015.7349926

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, April 2020 1541

[23] C.-H. Liu, "A cloud platform for compatibility testing of android multimedia applications," in
Proc. of International Conference on Frontier Computing, pp. 169-178, July 12-14, 2017.
Article (CrossRef Link)

[24] C. Guo, S. Zhu, T. Wang and H. Wang, "FeT: hybrid cloud-based mobile bank application
testing," in Proc. of IEEE International Conference on Software Quality, Reliability and Security
Companion (QRS-C), pp. 21-26, July 16-20, 2018. Article (CrossRef Link)

[25] M. Ficco, R. Pietrantuono and S. Russo, "Hybrid simulation and test of vessel traffic systems on
the cloud," IEEE Access, vol. 6, pp. 47273-47287, August, 2018. Article (CrossRef Link)

[26] H. Kim, A. Ahmad, J. Hwang and et al, "IoT-TaaS:towards a prospective IoT testing
framework," IEEE Access, vol. 6, pp. 15480-15493, 2018. Article (CrossRef Link)

[27] W.-T. Tsai and G. Qi, "Integrated fault detection and test algebra for combinatorial testing in
TaaS (Testing-as-a-Service)," Simulation Modeling Practice and Theory, vol. 68, pp. 108-124,
November, 2016. Article (CrossRef Link)

[28] S. Zhang and B. Pi, "Mobile functional test on TaaS environment," in Proc. of 9th IEEE
International Symposium on Service-Oriented System Engineering (SOSE), pp. 315-320, March
30-April 3, 2015. Article (CrossRef Link)

[29] C. Tao and J. Gao, "On building a cloud-based mobile testing infrastructure service system,"
Journal of System and Software, vol. 124, pp. 39-55, February, 2017. Article (CrossRef Link)

[30] S. Ali and H. Li, "Moving Software Testing to the Cloud: An Adoption Assessment Model
Based on Fuzzy Multi-Attribute Decision Making Algorithm," in Proc. of 2019 IEEE 6th IEEE
International Conference on Industrial Engineering and Applications (ICIEA), pp. 382-386,
April 12-15, 2019. Article (CrossRef Link)

[31] A.-R. Eid, H. Aloran, M. Salah and et. al., "A mutation-based model to rank testing as a service
(TaaS) providers in cloud computing," in Proc. of the International Conference on Internet of
things and Cloud Computing, pp. 1-5, March 22-23, 2016. Article (CrossRef Link)

[32] R. R. Oliveira, R. M. Oliveira, A. S. Oliveira, "Impact of the Vendor Lock-in Problem on
Testing as a Service (TaaS)," in Proc. of 2017 IEEE International Conference on Cloud
Engineering (ICCE), pp. 190-196, April 4-8, 2017. Article (CrossRef Link)

[33] Parasoft, "SOAtest," https://www.parasoft.com/products/soatest.
[34] Akamai, "CloudTest," https://www.akamai.com/cn/zh/products/performance/cloudtest.jsp.
[35] Sauce Labs, "Continuous Testing Cloud," https://saucelabs.com.
[36] Microsoft, "Xamarin Test Cloud," https://testcloud.xamarin.com.
[37] Alibaba, "MQC," http://mqc.aliyun.com.
[38] Tecent, "WeTest," https://wetest.qq.com.
[39] Baidu, "Baidu MTC," http://mtc.baidu.com.
[40] Testin, "cloud testing service platform," http://www.testin.cn.
[41] J. Chen, C. Wang, F. Liu and Y. Wang, "Research and implementation of a software online

testing platform model based on cloud computing," in Proc. of 5th International Conference on
Advanced Cloud and Big Data, pp. 87-93, August 13-16, 2017. Article (CrossRef Link)

[42] B. Kavitha and P. Varalakshmi, "Performance analysis of virtual machines and docker
containers," in Proc. of International Conference on Data Science Analytics and Applications, pp.
99-113, January 4-6, 2018. Article (CrossRef Link)

[43] Openstack, “Open source software for creating private and public clouds,”
https://www.openstack.org.

[44] UnixBench, "A benchmark suite for unix-like systems,"
https://www.ostechnix.com/unixbench-benchmark-suite-unix-like-systems.

https://doi.org/10.1007/978-981-10-7398-4_18
https://doi.org/10.1109/QRS-C.2018.00018
https://doi.org/10.1109/ACCESS.2018.2865683
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6DsZiy2erGD17Fn6S9q&page=2&doc=20
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6DsZiy2erGD17Fn6S9q&page=2&doc=20
https://doi.org/10.1109/ACCESS.2018.2802489
http://apps.webofknowledge.com/javascript:;
http://apps.webofknowledge.com/javascript:;
https://doi.org/10.1016/j.simpat.2016.08.003
http://dx.doi.org/doi:10.1109/SOSE.2015.27
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=6DsZiy2erGD17Fn6S9q&author_name=Gao,%20Jerry&dais_id=624041&excludeEventConfig=ExcludeIfFromFullRecPage
https://doi.org/10.1016/j.jss.2016.11.016
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6DsZiy2erGD17Fn6S9q&page=1&doc=7
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6DsZiy2erGD17Fn6S9q&page=1&doc=7
https://doi.org/10.1109/IEA.2019.8714986
http://dx.doi.org/doi:10.1145/2896387.2896403
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6AxFKRwkmjJMmR1Yyro&page=5&doc=41
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=6AxFKRwkmjJMmR1Yyro&page=5&doc=41
https://doi.org/10.1109/IC2E.2017.30
https://www.parasoft.com/products/soatest
https://www.akamai.com/cn/zh/products/performance/cloudtest.jsp
https://saucelabs.com/
https://testcloud.xamarin.com/
http://mqc.aliyun.com/
https://wetest.qq.com/
http://mtc.baidu.com/
http://www.testin.cn/
http://dx.doi.org/doi:10.1109/CBD.2017.23
https://doi.org/10.1007/978-981-10-8603-8_9
https://www.openstack.org/
https://www.ostechnix.com/unixbench-benchmark-suite-unix-like-systems

1542 Chen et al.: A Hybrid Cloud Testing System Based on Virtual Machines and Networks

Jing Chen received the M.S. degree from Beijing Institute of Technology, and is
currently working toward her Ph.D. degree in Shandong University of Science and
Technology. She is also an Associate Research Fellow at Shandong Computer
Science Center (National Supercomputer Center in Jinan). Her research interests
include cloud computing and software testing.

Honghua Yan received the M.S. degree from Shandong University in 2014. He is
currently a senior engineer at Shandong GreenPower Technology Co., Ltd. His
current research interest focuses on automation of electric power systems.

Chunxiao Wang received the M.S. degree from Shandong University in 2004. She is
currently an Associate Research Fellow at Shandong Computer Science Center
(National Supercomputer Center in Jinan). Her Her research interests include big data
analysis and artificial intelligence.

Xuyan Liu received the M.S. degree from Shandong University in 2003. He is
currently an Engineer at China Telecom Corporation Limited, Shandong Branch
company. His research interests include network transmission and network
optimization.

