• Title/Summary/Keyword: model reference adaptive fuzzy control

Search Result 87, Processing Time 0.024 seconds

Adaptive Fuzzy-Neuro Controller for High Performance of Induction Motor (유도전동기의 고성능 제어를 위한 적응 퍼지-뉴로 제어기)

  • Choi, Jung-Sik;Nam, Su-Myung;Ko, Jae-Sub;Jung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.315-320
    • /
    • 2005
  • This paper is proposed adaptive fuzzy-neuro controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of nor measured between the motor speed and output of a reference model. The control performance of the adaptive fuzy-neuro controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

The Speed Control and Estimation of IPMSM using Adaptive FNN and ANN

  • Lee, Hong-Gyun;Lee, Jung-Chul;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1478-1481
    • /
    • 2005
  • As the model of most practical system cannot be obtained, the practice of typical control method is limited. Accordingly, numerous artificial intelligence control methods have been used widely. Fuzzy control and neural network control have been an important point in the developing process of the field. This paper is proposed adaptive fuzzy-neural network based on the vector controlled interior permanent magnet synchronous motor drive system. The fuzzy-neural network is first utilized for the speed control. A model reference adaptive scheme is then proposed in which the adaptation mechanism is executed using fuzzy-neural network. Also, this paper is proposed estimation of speed of interior permanent magnet synchronous motor using artificial neural network controller. The back-propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back-propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

Adaptive Fuzzy Control for High Performance PMSM Drive (고성능 PMSM 드라이브를 위한 적응 퍼지제어기)

  • Chung, Dong-Hwa;Lee, Jung-Chul;Lee , Hong-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.535-541
    • /
    • 2002
  • This paper proposes an adaptive fuzzy controller based fuzzy logic control for high performance of permanent magnet synchronous motor(PMSM) drive. In the proposed system, fuzzy control is sued to implement the direct controller as well as the adaptation mechanism. The adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed controller is confirmed by performance results for PMSM drive system.

Adaptive NFC Control for High Performance Control of SPMSM Drive (SPMSM 드라이브의 고성능 제어를 위한 적응 NFC 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Lee Young-Sil;Nam Su-Myeong;Park Gi-Tae;Chung Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1248-1250
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network controller(NFC) for speed control of surface permanent magnet synchronous motor(SPMSM) drive. The design of this algorithm based on NFC that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive NFC is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Composite Adaptive Dual Fuzzy Control of Nonlinear Systems (비선형 시스템의 이원적 합성 적응 퍼지 제어)

  • Kim, Sung-Wan;Kim, Euntai;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.141-144
    • /
    • 2003
  • A composite adaptive dual fuzzy controller combining the approximate mathematical model, linguistic model description, linguistic control rules and identification modeling error into a single adaptive fuzzy controller is developed for a nonlinear system. It ensures the system output tracks the desired reference value and excites the plant sufficiently for accelerating the parameter estimation process so that the control performances are greatly improved. Using the Lyapunov synthesis approach, proposed controller is analyzed and simulation results verify the effectiveness of the proposed control algorithm.

  • PDF

Adaptive Fuzzy Controller for High Performance of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 적응 퍼지제어기)

  • Lee, Jung-Ho;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Jong-Kwan;Park, Ki-Tae;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.152-154
    • /
    • 2006
  • This paper investigates the adaptive control of a fuzzy logic based speed and flux controller for a vector controlled induction motor drive. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for induction motor drive system

  • PDF

High Performance of Induction Motor Drive with HAI Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.154-157
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design..of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Adaptive Fuzzy-Neuro Controller for High Performance of Induction Motor (유도전동기의 고성능 제어를 위한 적응 퍼지-뉴로 제어기)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.53-61
    • /
    • 2006
  • This paper is proposed adaptive fuzzy-neuro controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. This controller uses fuzzy nile as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy-neuro controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Speed and Position Sensorless Control of SPMSM with Adaptive Observer (적응 관측기에 의한 SPMSM의 속도 및 위치 센서리스 제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Cha, Young-Doo;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • This paper is proposed the speed and position sensorless control of surface permanent magnet synchronous motor(SPMSM) with adaptive fuzzy and observer. A adaptive fuzzy controller is applied for speed control of SPMSM drive. A adaptive state observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of SPMSM, that employs a d - q rotating reference frame attached to the rotor. A adaptive observer is implemented to compute the speed and position feedback signal. The validity of the proposed sensorless scheme is confirmed by various response characteristics.

An Adaptive Controller Cooperating with Fuzzy Controller for Unstable Nonlinear Time-invariant Systems (불안정 비선형 시불변 시스템을 위한 퍼지제어기가 결합된 적응제어기)

  • Dae-Young, Kim;In-Hwan, Kim;Jong-Hwa, Kim;Byung-Kyul, Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.946-961
    • /
    • 2004
  • A new adaptive controller which combines a model reference adaptive controller (MRAC) and a fuzzy controller is developed for unstable nonlinear time-invariant systems. The fuzzy controller is used to analyze and to compensate the nonlinear time-invariant characteristics of the plant. The MRAC is applied to control the linear time-invariant subsystem of the unknown plant, where the nonlinear time-invariant plant is supposed to comprise a nonlinear time-invariant subsystem and a linear time-invariant subsystem. The stability analysis for the overall system is discussed in view of global asymptotic stability. In conclusion. the unknown nonlinear time-invariant plant can be controlled by the new adaptive control theory such that the output error of the given plant converges to zero asymptotically.