• Title/Summary/Keyword: model based

Search Result 60,316, Processing Time 0.063 seconds

An Efficient Cluster Based Service Discovery Model for Mobile Ad hoc Network

  • Buvana, M.;Suganthi, M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.680-699
    • /
    • 2015
  • The use of web service has been increased rapidly, with an increase in the number of available services, finding the exact service is the challenging task. Service discovery is the most significant job to complete the service discoverers needs. In order to achieve the efficient service discovery, we focus on designing a cluster based service discovery model for service registering and service provisioning among all mobile nodes in a mobile ad hoc network (MANETs). A dynamic backbone of nodes (i.e. cluster heads) that forms a service repository to which MANET nodes can publish their services and/or send their service queries. The designed model is based on storing services with their service description on cluster head nodes that are found in accordance with the proposed cluster head election model. In addition to identifying and analyzing the system parameters for finding the effectiveness of our model, this paper studies the stability analysis of the network, overhead of the cluster, and bandwidth utilization and network traffic is evaluated using analytic derivations and experimental evaluation has been done.

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.

Fuzzy-Model-Based Kalman Filter for Radar Tracking

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.311-314
    • /
    • 2003
  • In radar tracking, since the sensor measures range, azimuth and elevation angle of a target, the measurement equation is nonlinear and the extended Kalman filter (EKF) is applied to nonlinear estimation. The conventional EKF has been widely used as a nonlinear filter for radar tracking, but the considerably large measurement error due to the linearization of nonlinear function in highly nonlinear situations may deteriorate the performance of the EKF. To solve this problem, a fuzzy-model-based Kalman filter (FMBKF) is proposed for radar tracking. The FMBKP uses a local model approximation based on a TS fuzzy model instead of a Jacobian matrix to linearize nonlinear measurement equation. The hybrid GA and RLS method is used to identify the premise and the consequent parameters and the rule numbers of this TS fuzzy model. In two-dimensional radar tracking problem, the proposed method is compared with the conventional EKF.

  • PDF

T-S Model Based Robust Indirect Adaptive Fuzzy Control

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.211-214
    • /
    • 2002
  • In this paper, we propose a robust indirect adaptive fuzzy state feedback regulator based on Takagi-Sugeno fuzzy model. The proposed adaptive fuzzy regulator is less sensitive to singularity than the conventional one based on the feedback linearization method. Furthermore, the proposed control method is applicable to not only plants with a perfect model but also plants with an imperfect model, which causes uncertainties. We verify the global stability of the proposed method by using Lyapunov method. In order to support the achievement, the application of the proposed adaptive fuzzy regulator to the control of a nonlinear system under the external disturbance is presented and the performance was verified by some simulation result.

  • PDF

Intelligent Fuzzy Controller for Nonlinear Systems

  • Joo, Young-Hoon;Lee, Sang-Jun;Oh, Jae-Heung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.139-145
    • /
    • 2002
  • In this paper, we proposed an intelligent digital redesign method for a class of fuzzy-model-based controllers, effective fur stabilization of continuous-time nonlinear systems. The TS fuzzy model is used to expend the results of the digital redesign technique to nonlinear systems. The proposed method utilized the recently developed LMI technique to obtain a digitally redesigned fuzzy-model-based controller. The intelligent digital redesign problem is converted to equivalent problem, and the LMI method is used to find the digitally redesigned fuzzy-model-based controller. The stabilization conditions of TS fuzzy model are derived for stabilization in the sense of Laypunov stability. In order to demonstrates the effectiveness and feasibility of the proposed controller design methodology, we applied this method to the single link flexible-joint robot arm.

A Fuzzy Model Based on the PNN Structure

  • Sang, Rok-Soo;Oh, Sung-Kwun;Ahn, Tae-Chon;Hur, Kul
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.83-86
    • /
    • 1998
  • In this paper, a fuzzy model based on the Polynomial Neural Network(PNN) structure is proposed to estimate the emission pattern for air pollutant in power plants. the new algorithm uses PNN algorithm based on Group Mehtod of Data Handling (GMDH) algorithm and fuzzy reasoning in order to identify the premise structure and parameter of fuzzy implications rules, and the least square method in order to identify the optimal consequence parameters. Both time series data for the gas furnace and data for the NOx emission process of gas turbine power plants are used for the purpose of evaluating the performance of the fuzzy model. The simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

A Robust Indirect Adaptive Fuzzy State Feedback Regulator Based on Takagi-Sugeno Fuzzy Model

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.554-558
    • /
    • 2002
  • In this paper, we propose a robust indirect adaptive fuzzy state feedback regulator based on Takagi-Sugeno fuzzy model. The proposed adaptive fuzzy regulator is less sensitive to singularity than the conventional one based on the feedback linearization method. Furthermore, the proposed control method is applicable to not only plants with a perfect model but also plants with an imperfect model, which causes uncertainties. We verify the global stability of the proposed method by using Lyapunov method. In order to support the achievement, the application of the proposed adaptive fuzzy regulator to the control of a nonlinear system under the external disturbance is presented and the performance was verified by some simulation result.

Comparison of Performance Measures for Credit-Card Delinquents Classification Models : Measured by Hit Ratio vs. by Utility (신용카드 연체자 분류모형의 성능평가 척도 비교 : 예측률과 유틸리티 중심으로)

  • Chung, Suk-Hoon;Suh, Yong-Moo
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.4
    • /
    • pp.21-36
    • /
    • 2008
  • As the great disturbance from abusing credit cards in Korea becomes stabilized, credit card companies need to interpret credit-card delinquents classification models from the viewpoint of profit. However, hit ratio which has been used as a measure of goodness of classification models just tells us how much correctly they classified rather than how much profits can be obtained as a result of using classification models. In this research, we tried to develop a new utility-based measure from the viewpoint of profit and then used this new measure to analyze two classification models(Neural Networks and Decision Tree models). We found that the hit ratio of neural model is higher than that of decision tree model, but the utility value of decision tree model is higher than that of neural model. This experiment shows the importance of utility based measure for credit-card delinquents classification models. We expect this new measure will contribute to increasing profits of credit card companies.

  • PDF

DEVELOPMENT OF PREDICTION MODEL OF THE SHAPE OF DEPOSITED PARTICLES APPLIED FOR AEROSOL BASED DIRECT-WRITE TECHNOLOGY (Aerosol을 이용한 Direct-Write 시스템에서 침착된 입자의 형상예측 모델에 관한 연구)

  • Park, Jun-Jung;Baek, Seong-Gu;Rhee, Gwang-Hoon
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Direct Write Technologies are being utilized in various industrial fields such as antennas, engineered structures, sensors and tissue engineering. With Direct Write Technologies, producing features have the mesoscale range, from 1 to 100 microns. One form of the Direct Write Technologies is based on aerosol dynamics. The shape of deposited aerosols determine the form of products in the Direct Write Technology based on aerosol dynamics. To predict shape of deposited aerosol, a prediction model is created. In this study, we estimated Line-Width and Line-Thickness from the prediction model. Results of prediction model is valid from comparison with experimental results.

A Study on the Instantaneous Shear Plane Based Cutting Force Model for End Milling (밀링 작업에서 순간 전단면에 기초한 절삭력 모델에 관한 연구)

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.225-260
    • /
    • 2002
  • The purpose of this paper is to further extend the theoretical understanding of the dynamic end milling process and to derive a computational model to predict the milling force components. A comparative assessment of different cutting force models is performed to demonstrate that the instantaneous shear plane based formulation is physically sound and offers the best agreement with experimental results. The procedure for the calculation of the model parameters used in the cutting force model, based on experimental data, has been presented. The validity of the proposed computational model has been experimentally verified through a series of cutting tests.

  • PDF