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Abstract - In radar tracking, since the sensor
measures range, azimuth and elevation angle of a
target, the measurement equation is nonlinear and
the extended Kalman filter (EKF) is applied to
nonlinear estimation. The conventional EKF has
been widely used as a nonlinear filter for radar
tracking, but the considerably large measurement
error due to the linearization of nonlinear function
in highly nonlinear situations may deteriorate the
performance of the EKF. To solve this problem, a
fuzzy-model-based Kalman filter (FMBKF) is
proposed for radar tracking. The FMBKF uses a
local model approximation based on a TS fuzzy
model instead of a Jacobian matrix to linearize
nonlinear measurement equation. The hybrid GA
and RLS method is used to identify the premise and
the consequent parameters and the rule numbers of
this TS fuzzy model. In two-dimensional radar
tracking problem, the proposed method is compared
with the conventional EKF,

I . INTRODUCTION

For the past three decades, the tracking problem of a
moving target with radar measurements has been a
fruitful application area for the state estimation. In
general, the objective of target tracking is to estimate
accurately the target trajectory dependent on the noisy
measurements from the sensor. In radar tracking
problems, since the sensor measures the range, azimuth
and elevation angle of a target, the measurement
equation is nonlinear and the extended Kalman filter
(EKF) is applied to nonlinear estimation. The EKF has
been widely used as a nonlinear filter for radar tracking.
However, the usual tracking filters relying on the linear
approximation lead to poor convergence and erratic
behavior in highly nonlinear situations.

To resolve this problem, a fuzzy-modei-based
Kalman filter (FMBKEF) is proposed for radar tracking.
The FMBKEF uses a local model approximation based on
a TS fuzzy model instead of a Jacobian matrix to
linearize nonlinear measurement equation. In the
proposed method, to identify the premise and the
consequent parameters and the rule numbers of this TS
fuzzy model, the hybrid GA and RLS method is used as
an optimization learning method to search more
globally optimal solution.
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The proposed FMBKF is applied and simulated in
two-dimensional radar tracking problem, Computer
simulation is divided by two parts-one is simulation for
offline optimization of TS fuzzy model and the other is
the Monte Carlo simulation for radar tracking using the
optimized TS fuzzy model. The FMBKF is compared
with the conventional EKF.

I. PROBLEM STATEMENTS

In a two-dimensional Cartesian co-ordinate system,
the target motion model is described by the following
linear discrete-time difference equation with additive
noise that models unpredictable disturbances [1, 2]:

Xpa = Fp X + Gy

where the state x, =[x, y;, %, 7, ]" consists of the

position and the velocity of a moving target, and process
noise v, is assumed to be white and zero-mean with

covariance
T
Elvivi1=0 .
The target is tracked by radar on the origin and the
sensor measures range rand azimuth & of the target
as shown in Fig. 1.
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The measurement equation is described by the
following nonlinear discrete equation

z; =h(x;)+w,
(i +y0"?

wr
=Lan”l(y /x ):|+[w ]
kX 0

the measurement noise

M

where w, and w, are



assumed to be white, Gaussian, mutually uncorrelated,
and zero-mean with covariance
R, =diag{o}, o5} .

The basic task of this paper is to optimize the TS
fuzzy model to be used in the linearization of nonlinear
function and to estimate as accurately as possible the
target trajectory from the radar measurements using the
optimized TS fuzzy model.

Il. FUZZY MODEL BASED KALMAN FILTER

A. EKF
In the EKF, the nonlinear measurement function of
(1) is approximated as follows:

h(x;) = h(X )+ Hp (X = Xppey) @
where H, is the Jacobian of h(:) evaluated at the
predicted state estimate X :

cosd, singd, 0 0
H, = oh(x) =| sin 8, cosb, 0 0
ox x=f,, , Fk Fk

where the prediction of range 7, and azimuth 6, are
defined by

- s ~ /

T = (Fepy + J’I%u:—x)l 2

O, = tan—l(j"klk-l ! Xp1)
The EKF algorithm using Jacobian linearization is
summarized as follows:
State prediction and its covariance

Kot = FroaX gt (3)
Popy = Foot Peypr i + G Qi Gi C))
Kalman Gain
K, = Pk|k—1HkT[HkPk[k-1HkT + R T (5)
Updated state estimate and its covariance
Xp = Xppeoy + K (2 — (X)) (6)
P =11 - K H 1Py Q)

B. FMBKF

The FMBKEF uses a local model approximation based
on a TS fuzzy model instead of a Jacobian matrix to
linearize nonlinear measurement equation. The ; th
(j=1---n) TS fuzzy nrule
measurement equation is as follows:

for each nonlinear
IF 7, isAlj and y, isAj, THENy=p{,q(1 +p{12

where input vector X, is the measured position in each

axis as follows:

=ln ) =0 w1

- T
=[r"cosO;" r"sindy"]

Xy

)

y means the output of each nonlinear measurement

equation and is represented in the form of linear
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combination of X, . 4/ (i=12) is the Gaussian

membership function with membership grade g/ (x;)
described as

N2
R 1 xA-c.j
J(x.) = =
Ui (x;) = exp 2( = ]

i

®

where ¢/ and o] are the center and the standard

deviation of the
respectively.

By product inference and weighted average
defuzzification, the output of this fuzzy system y for

Gaussian membership function

the input X, is obtained as

L () 1d ()1 [pf 3, + pixy )
Jj=l

y= - . _
Z[#lj (xl)#f (x2)]

j=1
Let 8/ be
- [ﬂ{(xl)#{(xz)]

S f () ()]

J=1

ﬂj

then

n ry . .
y=2B[p{x +pix,]
j=1
n Py s s .
= Z[ﬂjpljxl + B/ pix;]
j=1
Thus the nonlinear measurement function h(x;) is
approximated in the FMBKF as follows:

h(xe) ~[4/ (%) HEOT =Y H,E,  (10)
j=1

where h,j (X;) means the /th (/ =1,2) measurement

equation of h(x,) for jth fuzzy rule and H, is the
measurement matrix denoted as follows.

Hﬁ{ﬂ{Pﬂ Bipl, 0 0]
Bipy PBipyn 0 0

where p/ means the value of B’ for the [ th

(11)

measurement equation of h(x,).

Finally, we can rewrite the measurement equation in
the following form

n
zf =) Hyx, +w,

=1

! o o (12)
_<|Bipl Biph, 00
=2\ Xe + Wi
By py Bipn
Now, we can apply the standard Kalman filter algorithm
and the FMBKF algorithm is as follows:

J=1



State prediction and its covariance

X k-t = Freo X gy (13)
Pr = Fk—lpk—ltk—leTAI + Gk—le—ler—l (14)
Kalman Gain
n T . T _
K§ =2 (P H D (H{ Py HY )+ R (15)
j=1 =1
Updated state estimate and its covariance
n )
Xy =Xyt + K[z, =D (H X )] (16)
j=l
n .
Pkﬂ = = Y (K HDPep a7

=

C. Identification of TS fuzzy model

Start program

Determine initial parameter:
Generate learning data

Initialize population

GA

identify the consequent ALS

frmemmmey

Decode chromosome

Evaluate chromosome

Crossover & Mutation

Replace old generation
by new one

No

Yeg

Load the elitest string

Fig. 2 The procedure for lgaming using the hybrid GA
and RLS method

In this paper, the hybrid GA and RLS method is used
to identify the TS fuzzy model. The GA is used to
identify the premise parameters and the rule numbers of
TS fuzzy model, and the RLS method is used to identify
the consequent parameters. The proposed hybrid GA
and RLS method is shown in Fig. 2 and is summarized
as follows [3-5].

Step 1: Set the parameters for the GA (maximum
generation number, maximum rule number,
population size, crossover rate, and mutation
rate).

Step 2: Randomly generate the initial population such
that all searching variables exist within the
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search space.
Identify the consequent parameters by RLS
Decode the chromosome of each individual in
the population and determine the fuzzy systems
for sub-models. Evaluate the determined fuzzy
systems by (6) and give a fitness value to each
individual in the population by (7).
Evolve a new population by reproduction,
crossover, and mutation.
Increase the generation number by one, and
replace the old generation with the new one.
During the replacement, preserve an individual
that has the maximum fitness value by the
elitist reproduction.
Repeat Steps 3 through 6 until one of the
following is satisfied:
(1) the satisfactory population shows up,
(2) the generation number reaches
maximum generation number, or
(3) the fitness function value is not increased
for the predetermined generations.

The GA represents the searching variables of the
given optimization problem as a chromosome
containing one or more sub-strings. In this case, the

Step 3:
Step 4:

Step 5:

Step 6:

Step 7:

the

searching variables are the center ¢/ and the standard
deviation o/ for a Gaussian membership function of

the fuzzy set 4/ and the consequent parameter p,-j LA

convenient way to convey the searching variables into a
chromosome is to gather all searching wvariables
associated with the ;th fuzzy rule into a string and to

concatenate the strings as
S,=kl. ol cd od, pi, pi}
§= {Slr S, oy SM}
where §; is the real coded parameter sub-string of the

J th fuzzy rule in an individual S. At the same time

and to identify the number of fuzzy rules, we utilize the
binary coded rule number string, which assigns a 1 or 0
for a valid or invalid rule, respectively.

The fitness of the individual is determined in inverse
proportion to the square error (SE) and the number of
rules.

1

—_— (18)
rule number + 1

where A means the relative value between MSE and
rule number.

ﬁtness:/1~—l—+ (a-2
SE+1

IV. SIMULATION RESULTS

Computer simulation was divided by two parts-one
was simulation for offline optimization of TS fuzzy
model and the other was the Monte Carlo simulation for
radar tracking using the optimized TS fuzzy model.

Figure 3 shows the training results using the hybrid
GA and RLS method.
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Fig. 3 Training results

Incoming target was considered and the initial state of
the target was

[150km 120km —125m -125m]",
and the standard deviation of process noise was set at
0.5m/s* for each axis, and those of measurement
noises were assumed to be 50m and 2° for range
and azimuth, respectively. The radar is located at the
origin and measures the tracker-to-target range and
azimuth at a sampling time 1 5.

The result for a Monte Carlo simulation of 200 runs is
shown in Fig. 4.
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Fig. 4 Simulation result
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V. CONCLUSIONS

In this paper, we proposed the fuzzy-model-based
Kalman filter (FMBKF) wusing a local model
approximation based on a TS fuzzy model. The hybrid
GA and RLS method was used to identify the premise
and the consequent parameters and the rule numbers of
the TS fuzzy model. The proposed FMBKF was applied
and simulated in two-dimensional radar tracking
problem. The simulation results have shown that the
FMBKF had much superior performance to the
conventional EKF.
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