• Title/Summary/Keyword: mode switching level

Search Result 101, Processing Time 0.036 seconds

Vector Controlled Inverter for Elevator Drive (ELEVATOR 구동용 VECTOR 제어 인버터)

  • Shin, H.J.;Jang, S.Y.;Lee, S.J.;Lee, S.D.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.627-630
    • /
    • 1991
  • This study is about vector controlled inverter for high quality elevator drive that is to improve the settling accuracy of elevator car and passenger's comfort in commercial buildings. In this study, an instantaneous space vector control type inverter was used to reduce the torque ripple ant to improve the velocity follow-up. This method calculates Instantaneous actual output torque and flux of induction motor by voltage and current, then compares them with a reference values by a speed regulator. The outputs of comparators select a switching mode, for an optimal voltage vector. Also, this study used IGBT (Insulated Gate Bipolar-Transistor), a high speed switching element, to reduce sound noise level, and DSP (Digital Signal Processor) was used to improve the reliability of the control circuit by fully digitalization.

  • PDF

A High Speed Address Recovery Technique for Single-Scan Plasma Display Panel(PDP) (Single-Scan Plasma Display Panel(PDP)를 위한 고속 어드레스 에너지 회수 기법)

  • Lee, Jun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.239-242
    • /
    • 2005
  • A high speed address recovery technique for AC plasma display Panel(PDP) is proposed. By removing the GND switching operation, the recovery speed can be increased and switching loss due to GND switch also becomes to be reduced. The proposed method is able to perform load-adaptive operation by controlling the voltage level of energy recovery capacitor, which prevents increasing inefficient power consumption caused by circuit loss during recovery operation. Thus, the technique shows the minimum address power consumption according to various displayed images, different from Prior methods operating in fixed mode regardless of images. Test results with 50" HD single-scan PDP(resolution = 1366$\times$768) show that less than 350ns of recovery time is successfully accomplished and about 54% of the maximum power consumption can be reduced, tracing minimum power consumption curves.

  • PDF

Initial Convergence Detection of Blind Equalization Algorithm Automatically (블라인드 등화 알고리즘의 초기 수렴 자동 검출 기법)

  • Choi, Ik-Hyun;Kim, Chul-Min;Choi, Soo-Chul;Oh, Kil-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.445-447
    • /
    • 2005
  • MCMA(modified constant modulus algorithm) accomplishes blind equalization and carrier phase recovery simultaneously. But, the error level of MCMA is not zero when the equalizer converges completely. Because the MCMA uses a special signal point instead of a original signal point. MCMA-DO(decision-directed) improves the steady-state performance but the performance of equalizer is decided by switching time between the MCMA and the DD. In this paper, according to the residual ISI(intersymbol interference) of the equalizer output, the most suitable switching time is decided automatically.

  • PDF

Load-Adaptive Address Energy Recovery Technique for Plasma Display Panel

  • Lee Jun-Yeong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.192-200
    • /
    • 2005
  • A high speed address recovery technique for AC plasma display panel(PDP) is proposed. By removing the GND switching operation, the recovery speed can be increased and switching loss due to GND switch also becomes to be reduced. The proposed method is able to perform load-adaptive operation by controlling the voltage level of energy recovery capacitor, which prevents increasing inefficient power consumption caused by circuit loss during recovery operation. Thus, th e technique shows the minimum address power consumption according to various displayed images, different from prior methods operating in fixed mode regardless of images. Test results with 50' HD single- scan PDP(resolution : $1366{\times}768$) show that less than 350ns of recovery time is successfully accomplished and about $54\%$ of the maximum power consumption can be reduced, tracing minimum power consumption curves.

  • PDF

Three-Phase Three-Switch Buck-Type Rectifier Based on Current Source Converter for 5MW PMSG Wind Turbine Systems

  • Chae, Beomseok;Suh, Yongsug;Kang, Tahyun
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1501-1512
    • /
    • 2018
  • This paper proposes a three-phase three-switch buck-type converter as the MSC of a wind turbine system. Owing to a novel switching modulation scheme that can eliminate the unwanted diode rectifier mode switching state, the proposed system exhibits a satisfying ac voltage and current waveform quality and torque ripple up to the level of a typical current source rectifier even under a wide power factor operating range. The proposed system has been verified through simulations and HILS tests on a PMSG wind turbine model of 5MW/4160V. The proposed converter has been shown to provide a stator current THD of 3.9% and a torque ripple of 1% under the rated power condition. In addition to the inherent advantage of the reduced switch count of three-phase three-switch buck-type converters, the proposed switching modulation technique can make this converter a viable solution for the MSC placed inside of a nacelle, which is under severe volume, weight and mechanical vibration design limits.

CMI Tolerant Readout IC for Two-Electrode ECG Recording (공통-모드 간섭 (CMI)에 강인한 2-전극 기반 심전도 계측 회로)

  • Sanggyun Kang;Kyeongsik Nam;Hyoungho Ko
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.432-440
    • /
    • 2023
  • This study introduces an efficient readout circuit designed for two-electrode electrocardiogram (ECG) recording, characterized by its low-noise and low-power consumption attributes. Unlike its three-electrode counterpart, the two-electrode ECG is susceptible to common-mode interference (CMI), causing signal distortion. To counter this, the proposed circuit integrates a common-mode charge pump (CMCP) with a window comparator, allowing for a CMI tolerance of up to 20 VPP. The CMCP design prevents the activation of electrostatic discharge (ESD) diodes and becomes operational only when CMI surpasses the predetermined range set by the window comparator. This ensures power efficiency and minimizes intermodulation distortion (IMD) arising from switching noise. To maintain ECG signal accuracy, the circuit employs a chopper-stabilized instrumentation amplifier (IA) for low-noise attributes, and to achieve high input impedance, it incorporates a floating high-pass filter (HPF) and a current-feedback instrumentation amplifier (CFIA). This comprehensive design integrates various components, including a QRS peak detector and serial peripheral interface (SPI), into a single 0.18-㎛ CMOS chip occupying 0.54 mm2. Experimental evaluations showed a 0.59 µVRMS noise level within a 1-100 Hz bandwidth and a power draw of 23.83 µW at 1.8 V.

An Efficient frame size Decision and Resource Allocation Method for Multiuser OFDM/TDD System in Multicell Environment (멀티셀 기반의 다중 사용자 OFDM-TDD 시스템에서 효과적인 프레임 크기 결정과 자원 할당 기법)

  • Keum Seung-Won;Kim Jung-Gon;Shin Kil-Ho;Kim Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.760-768
    • /
    • 2006
  • In this paper, an novel resource allocation scheme is proposed for adaptive multiuser OFDM-TDD systems in multiuser, multicell and frequency-selective time-varying channels. The optimal frame size and mode switching level of each user is determined by maximizing the spectrum efficiency. In multi-cell environment, the allocation scheme must consider the cochannel interference of other cells. The measured SINR is changed in one frame size because the interference is changed. The frame size is determined to consider both the optimal frame size and cochannel user's frame size of other cells. we propose the efficient resource allocation scheme which is satisfied the target BER.

THREE LEVEL SINGLE-PHASE SINGLE STAGE AC/DC RESONANT CONVERTER WITH A WIDE OUTPUT OPERATING VOLTAGE RANGE (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Lee, G.W;Kim, M.J;Kim, E.S
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.434-435
    • /
    • 2018
  • In this paper, a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage is presented. It integrates a PFC converter and a three level DC/DC converter into one. The proposed converter operates at a fixed frequency and provides a wide controllable output voltage ($200V_{dc}-430V_{dc}$) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. Moreover, all the switching devices operate with ZVS, and the converter's THD is small especially at full load. The feasibility of the proposed converter is verified with experimental results of a 1.5kW prototype.

  • PDF

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

A design of the high efficiency PMIC with DT-CMOS switch for portable application (DT-CMOS 스위치를 사용한 휴대기기용 고효율 전원제어부 설계)

  • Ha, Ka-San;Lee, Kang-Yoon;Ha, Jae-Hwan;Ju, Hwan-Kyu;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.208-215
    • /
    • 2009
  • The high efficiency power management IC(PMIC) with DT-CMOS(Dynamic Threshold voltage MOSFET) switching device for portable application is proposed in this paper. Because portable applications need high output voltages and low output voltage, Boost converter and Buck converter are embedded in One-chip. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. DTMOS with low on-resistance is designed to decrease conduction loss. Boost converter and Buck converter, are based on Voltage-mode PWM control circuits and low on-resistance switching device, achieved the high efficiency near 92.1% and 95%, respectively, at 100mA output current. And Step-down DC-DC converter in stand-by mode below 1mA is designed with LDO in order to achive high efficiency.

  • PDF