• 제목/요약/키워드: mode sensitivity

검색결과 707건 처리시간 0.023초

A direct damage detection method using Multiple Damage Localization Index Based on Mode Shapes criterion

  • Homaei, F.;Shojaee, S.;Amiri, G. Ghodrati
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.183-202
    • /
    • 2014
  • A new method of multiple damage detection in beam like structures is introduced. The mode shapes of both healthy and damaged structures are used in damage detection process (DDP). Multiple Damage Localization Index Based on Mode Shapes (MDLIBMS) is presented as a criterion in detecting damaged elements. A finite element modeling of structures is used to calculate the mode shapes parameters. The main advantages of the proposed method are its simplicity, flexibility on the number of elements and so the accuracy of the damage(s) position(s), sensitivity to small damage extend, capability in prediction of required number of mode shapes and low sensitivity to noisy data. In fact, because of differential and comparative form of MDLIBMS, using noise polluted data doesn't have major effect on the results. This makes the proposed method a powerful one in damage detection according to measured mode shape data. Because of its flexibility, damage detection process in multi span bridge girders with non-prismatic sections can be done by this method. Numerical simulations used to demonstrate these advantages.

가동자석형 광 픽업 엑츄에이터의 개발 (Development of Moving Magnet Type Optical Pickup Actuator)

  • 허영준;김윤기;송명규;김상룡;박노철;유정훈;박영필
    • 정보저장시스템학회논문집
    • /
    • 제4권1호
    • /
    • pp.23-28
    • /
    • 2008
  • In this paper we suggested the moving magnet type actuator for optical disc drive which has high frequency of flexible mode. Generally, moving magnet type actuator has the advantage for increase the frequency of flexible mode. But it has low driving sensitivity due to the weight of its moving part. To overcome this shortcoming, we designed the model with the closed electromagnetic circuit for tracking direction. In addition, we improved the driving sensitivity and frequency of flexible mode by using of DOE (design of experiment) procedure for EM circuit. Consequently, it is verified that final designed model satisfied with the desired specifications.

  • PDF

유연도 변화를 이용한 연속교의 손상부위 추정 및 민감도 해석 (Damage Location Detection by Using Variation of Flexibility and its Sensitivity to Measurement Errors)

  • 최형진;백영인;이학은
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.138-146
    • /
    • 1996
  • The presence of a damage, such as a crack, in a structure increases the flexibility and damping in the structure. Most of methods to detect damage or damage location uses stiffness matrix of the structural system. The modification of stiffness matrix, however, has complicated procedures to identify structural. system in the basis of finite element model and has too many degree of freedom to calculate. Identification of changes of flexibility of structure can offer damage information immediately and simple procedure can employ real time continuous monitoring system. To identify changes of the flexibility, vibration mode shapes and natural frequencies are usually used. In this paper, a procedure for damage location in continuous girder bridges using vibration data is described. The effectiveness and sensitivity of the presented method to measurement errors in mode shapes and natural frequencies are investigated using analytical results from finite element models. It is shown that the errors in the first mode shape and first natural frequency demonstrate much larger influence than those in the higher mode shapes and modal frequencies.

  • PDF

Fiber-Optic Temperature Sensor Based on Single Mode Fused Fiber Coupler

  • Kim, Kwang-Taek;Park, Kiu-Ha
    • Journal of the Optical Society of Korea
    • /
    • 제12권3호
    • /
    • pp.152-156
    • /
    • 2008
  • This paper reports a fiber-optic temperature sensor using a single mode fused fiber coupler incorporating a thermo-optic external medium. The spectral transmission was altered by changing the refractive index of the external thermo-optic medium. A theoretical and experimental investigation was carried out with the aim of achieving high sensitivity. The measured sensitivity for the environmental temperature was as high as -1.5 $nm/^{\circ}C$.

Sensing Characteristics of Uncoated Double Cladding Long-period Fiber Grating Based on Mode Transition and Dual-peak Resonance

  • Zhou, Yuan;Gu, Zheng Tian;Ling, Qiang
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.243-249
    • /
    • 2021
  • In this paper, the sensing characteristics of a double cladding fiber (DCF) long-period fiber grating (LPFG) to the surrounding refractive index (SRI) are studied. The outer cladding of the DCF plays the role of the overlay, thus, the mode transition (MT) phenomenon of DCF can be induced by etching the outer cladding radius instead of coating overlays. The response characteristics of the effective refractive index (ERI) of the cladding mode to the outer cladding radius are analyzed. It is found that in the MT range, the change rate of ERIs of cladding modes is relatively larger than that for other ranges. Further, based on the features of the mode transition region (MTR), the phase-matching curve of the 11th cladding mode is investigated, and the response of the DCF-LPFG to the SRI is characterized by the change of wavelength intervals between the dual peaks under different outer cladding radii. The numerical simulation results show that the SRI sensitivity is greatly improved, which is available to 3484.0 nm/RIU with the fitting degree 0.998 in the SRI range of 1.33-1.37. The proposed DCF-LPFG can provide new theoretical support for designing the DCF-LPFG refractive index sensor with excellent performances of sensitivity, linearity and structure.

진동형상 민감도에 의한 가속도계 최적위치 결정 (Determination of Optimal Accelerometer Locations using Mode-Shape Sensitivity)

  • 권순정;신수봉
    • 한국지진공학회논문집
    • /
    • 제10권6호
    • /
    • pp.29-36
    • /
    • 2006
  • 이 논문에서는 진동형상의 민감도로 유도한 피셔정보행렬(Fisher Information Matrix)를 이용하는 가속도계의 최적위치 결정 기법 MS-EIDV(modal sensitivity-effective independence distribution vector)을 제안하고, 이를 사용하여 구조물의 동적 거동을 잘 반영하여 가속도계의 최적위치를 결정할 수 있는 합리적인 기준을 제시한다. 실험을 위한 가속도계의 최적위치는 구조물의 변수가 기지값이어야 결정되지만 구조물의 변수값은 실험결과를 사용한 SI(system identification)기법과 같은 역해석을 통해 구해지기 때문에, 본 논문에서는 구조변수의 오차를 감안하여 미지의 구조물의 현 상태를 통계적으로 반영하는 방법을 제시하였다. 제안된 방법들의 검증을 위해 주파수영역 SI기법을 적용하였으며, 구조변수 추정 결과를 통해 현장에서 계측하고자하는 진동형상의 수에 따른 최소 필요 가속도계의 개수를 제시하였다. 수치예제에서는 진동형상만을 이용한 최적위치 결정법인 EIDV기법과 제안된 MS-EIDV기법에 의해 추정된 구조 변수 결과를 비교하였다.

집적광학 바이오케미컬 센서에 적합한 Si3N4/SiO2 슬롯 및 릿지-슬롯 광 도파로 제원 최적화 및 감지도 해석 (Specification optimization and sensitivity analysis of Si3N4/SiO2 slot and ridge-slot optical waveguides for integrated-optical biochemical sensors)

  • 장재식;정홍식
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.139-147
    • /
    • 2021
  • Numerical analysis was performed using FIMMWAVE to optimize the specifications of Si3N4/SiO2 slot and ridge-slot optical waveguides based on confinement factor and effective mode area. The optimized specifications were confirmed based on sensitivity in terms of the refractive index of the analyte. The specifications of the slot optical waveguide, i.e., the width of the slot and the width and height of the rails, were optimized to 0.2 ㎛, 0.46 ㎛, and 0.5 ㎛ respectively. When the wavelength was 1.55 ㎛ and the refractive index of the slot was 1.3, the confinement factor and effective mode area of 0.2024 and 2.04 ㎛2, respectively, were obtained based on the optimized specifications. The thickness of the ridge and the refractive index of the slot were set to 0.04 ㎛ and 1.1, respectively, to optimize the ridge-slot optical waveguide, and the confinement factor and effective mode area were calculated as 0.1393 and 2.90 ㎛2, respectively. When the confinement coefficient and detection degree of the two structures were compared in the range of 1 to 1.3 of the analyte index, it was observed that the confinement coefficient and sensitivity were higher in the ridge-slot optical waveguide in the region with a refractive index less than 1.133, but the reverse situation occurred in the other region. Therefore, in the implementation of the integrated optical biochemical sensor, it is possible to propose a selection criterion for the two parameters depending on the value of the refractive index of the analyte.

Sensitivity analysis of circumferential transducer array with T(0,1) mode of pipes

  • Niu, Xudong;Marques, Hugo R.;Chen, Hua-Peng
    • Smart Structures and Systems
    • /
    • 제21권6호
    • /
    • pp.761-776
    • /
    • 2018
  • Guided wave testing is a reliable and safe method for pipeline inspection. In general, guided wave testing employs a circumferential array of piezoelectric transducers to clamp on the pipe circumference. The sensitivity of the operation depends on many factors, including transducer distribution across the circumferential array. This paper presents the sensitivity analysis of transducer array for the circumferential characteristics of guided waves in a pipe using finite element modelling and experimental studies. Various cases are investigated for the outputs of guided waves in the numerical simulations, including the number of transducers per array, transducer excitation variability and variations in transducer spacing. The effect of the dimensions of simulated notches in the pipe is also investigated for different arrangements of the transducer array. The results from the finite element numerical simulations are then compared with the related experimental results. Results show that the numerical outputs agree well with the experimental data, and the guided wave mode T(0,1) presents high sensitivity to the notch size in the circumferential direction, but low sensitivity to the notch size in the axial direction.

Finite element model updating of a cable-stayed bridge using metaheuristic algorithms combined with Morris method for sensitivity analysis

  • Ho, Long V.;Khatir, Samir;Roeck, Guido D.;Bui-Tien, Thanh;Wahab, Magd Abdel
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.451-468
    • /
    • 2020
  • Although model updating has been widely applied using a specific optimization algorithm with a single objective function using frequencies, mode shapes or frequency response functions, there are few studies that investigate hybrid optimization algorithms for real structures. Many of them did not take into account the sensitivity of the updating parameters to the model outputs. Therefore, in this paper, optimization algorithms and sensitivity analysis are applied for model updating of a real cable-stayed bridge, i.e., the Kien bridge in Vietnam, based on experimental data. First, a global sensitivity analysis using Morris method is employed to find out the most sensitive parameters among twenty surveyed parameters based on the outputs of a Finite Element (FE) model. Then, an objective function related to the differences between frequencies, and mode shapes by means of MAC, COMAC and eCOMAC indices, is introduced. Three metaheuristic algorithms, namely Gravitational Search Algorithm (GSA), Particle Swarm Optimization algorithm (PSO) and hybrid PSOGSA algorithm, are applied to minimize the difference between simulation and experimental results. A laboratory pipe and Kien bridge are used to validate the proposed approach. Efficiency and reliability of the proposed algorithms are investigated by comparing their convergence rate, computational time, errors in frequencies and mode shapes with experimental data. From the results, PSO and PSOGSA show good performance and are suitable for complex and time-consuming analysis such as model updating of a real cable-stayed bridge. Meanwhile, GSA shows a slow convergence for the same number of population and iterations as PSO and PSOGSA.

고유진동수의 간이 추정식을 이용한 보강판 구조물의 동특성의 최적변경에 관한 연구 (A Study on Optimum Modification of Dynamic Characteristics of Stiffened Plate Using Simplified Equation of Natural Frequency)

  • 박성현;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.48-58
    • /
    • 2002
  • There is a purpose of this study for the proposal of the optimum technique utilized for the vibration design initial step. The stiffened plate structure for the ship hull is made for analysis model. To begin with, dynamic characteristics of stiffened plate structure is analysed using FEM. Main vibrational mode of the structure is decided in the analytical result of FEM. The simplified equation on the natural frequency of the main vibrational mode is induced. Next, sensitivity analysis is carried out using the simplified equation, and rate of change of dynamic characteristics is calculated. Then, amount of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of panel, cross section moment of stiffener and girder become a design variable. The validity of the optimization method using simplified equation is examined. It is shown that the result effective in the optimum modification for natural frequency of the stiffened plate structure.