• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.03 seconds

A Study on the Natural Frequencies of the Sound Emitted by Thin Conical Shell (圓통形셸 의 音響調節 에 관한 實驗的 硏究)

  • 염영하;곽재경;정석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.353-360
    • /
    • 1982
  • The determination of the natural frequencies and mode shapes for thin conical shell is an important step not only in the investigation of the dynamic response of the composite structures such as missile cone, mose firings, but also in the analysis of the acoustic behavior of bells. A Rayleigh-Ritz procedure was used to determine the natural frequencies for a certain class of mode shapes of a thin conical shell built in on the edge with the smaller radius and free on the other edge. Both bending and extensional energy are included in the analysis. This paper described the experiments on the two natural frequencies which are present in association with two preferential modal directions, as a result of imperfection of the thin conical shell. Experimental work was conducted on two different bronze conical shells. One of these was specially designed to the effects of the adding distributed mass to the end of the conical shell. The other shells were identical in all dimensions except that of the thickness to the end of the conical shell. In this paper, the effect of a adding mass to a conical shell was investigated. Experimental result was that the magnitude of the natural frequency rate and the increase of depth of beat frequency depend upon the location of adding lumped mass on the surface of the conical shell.

Analysis for Operation Point Change in Mode Transition at the Turbopump-Gas Generator Coupled Test (터보펌프-가스발생기 연계시험의 모드 변환 중간 작동점 분석)

  • Nam, Chang-Ho;Kim, Seung-Han;Park, Soon-Young;Kim, Cheul-Woong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • The characteristics at the intermediate operation point of the turbopump-gas generator(TP-GG) coupled test were investigated by analytical method. The pump outlet pressure, gas generator mixture ratio, gas generator pressure, and temperature were examined considering risk minimization of test. The engine system shows different behavior from the TP-GG coupled test at the intermediate operation point since the combustion pressure feeds back to the flow rate in the lines. The advanced valve changes in the combustor line helps less risky mode transition.

Mixed Mode Crack Extension in Orthotropic Materials (직방성 복합재료에서 혼합모드 균열의 진전)

  • Kang, Seok-Jin;Cho, Hyung-Seok;Lim, Won-Kyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.35-41
    • /
    • 2005
  • The problem of an orthotropic composite material with a central crack inclined with respect to the principal axes of material symmetry is studied. The material is subjected to uniform biaxial loading along its outer boundaries. The normal stress ratio theory is applied to predict initial crack extension behavior in cracked composite materials. The dependence of the crack extension angle with respect to the biaxial loading and the principal axes of material symmetry is discussed. Our analysis shows significant effects of horizontal loading, crack angle and fiber angle on the crack extension.

Investigation into the Internal Flow Characteristics of a Pump-turbine Model

  • Singh, Patrick Mark;Chen, Chengcheng;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.36-42
    • /
    • 2015
  • This is a study about one of the most widely used hydro machinery all over the world - pump-turbine. The system has an impeller which pumps water to an upper reservoir during the night and the same impeller acts as a runner for turbine mode during the day for providing stable electrical power to the grid. The internal flow analysis is investigated in this study to help understand how the water passes through the passage of the vanes and blades, providing the designer with useful information on the behavior of recirculation flows which could reduce the efficiency of the pump-turbine. The 100 kW pump-turbine model has H = 32 m, $Q=0.336m^3/s$ and $N=1200min^{-1}$. For this study there are 7 blades, 19 stay vanes and 20 guide vanes. From this study, it was observed that this pump-turbine design showed very good internal flow characteristics with no flow separation and no recirculation flows in normal operation mode.

Energy Absorption Characteristics of the Al/CFRP/GFRP Hybrid Member under Quasi-static Axial Compressive Load (준정적 축 압축하중을 받는 Al/CFRP/GFRP 혼성부재의 에너지흡수 특성)

  • Kim, Sun-Kyu;Heo, Uk;Im, Kwang-Hee;Jung, Jong-An
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.588-592
    • /
    • 2012
  • This study concentrates the effect of hybridisation on the collapse mode and energy absorption for composite cylinders. The static collapse behavior of laminated(Al/CFRP/GFRP) circular-cylindrical composite shell under quasi-static axial compressive load has been investigated experimentally. Eight different hybrids of laminated(Al/CFRP/GFRP) circular-cylindrical composite shell were fabricated by autoclave. Eight types of composites were tested, namely, Al/carbon fiber/epoxy, Al/glass fiber/epoxy, Al/carbon-carbon-glass/epoxy, Al/carbon-glass-carbon/epoxy, Al/carbon-glass-glass/epoxy, Al/glass-glass-carbon/epoxy, Al/glass-carbon-glass/epoxy and Al/glass-carbon-carbon/epoxy. Collpase modes were highly dominated by the effect of hybridisation. The results also showed that the hybrid member with material sequence of Al-glass-carbon-carbon/epoxy exhibited good energy absorption capability.

Frequency Window Method for the Vibration of Secondary Structural Systems (Frequency Window Method에 의한 Secondary 구조 시스템의 진동특성)

  • ;Igusa, Takeru;Achenbach, Jan D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.153-158
    • /
    • 1991
  • Recently, demands on light weight, high strength, and low noise or vibration have led to the design of complicated structural systems. Although finite elements [1], mode synthesis [2], and statistical energy analysis [3] can be used to compute the dynamic response of such systems, the structural complexity has made the interpretation of the results of such analysis difficult. Many researchers in dynamic analysis have sought to further develop existing theories or develop alternate methods to obtain greater insight in the behavior of large massive primary systems (P systems) with connected light secondary systems (S systems). Some recent research includes work by Sackman and Kelly [4], Sackman et al.[5], Der Kiureghian et al.[6], and Igusa and Der Kiureghian [7-9] who have combined mode synthesis concepts, matrix algebraic theory, and perturbation methods for characterizing weakly-coupled structural systems. A major limitation of these works are that they are limited to lumped mass S systems. In this paper, the general ideas in the Refs.[4-9] are used to study continuous S systems and the method to reduce the complexity, studied in the works by Igusa, Achenbach, and Min [10,11], is developed into the frequency window method.

  • PDF

A Physical Simulation of Powder Forged Con-Rod (승용차용 커넥팅로드의 분말단조시 예비성형체설계를 위한 실험적 연구)

  • 이정환;이영선;박종진;정형식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.35-46
    • /
    • 1996
  • The powder forging process offers beneficial material utilization as well as the minimization of finishing operations over that of conventionally forged rods. In the present work, the sintering behavior of Fe-2Cu-0.6C-0.35MnS, optimum preform design and forgeability of various forging conditions were investigated. This data were generated using a newly proposed sub-scaled con-rod specimen developed specifically to simulate the powder forging process. The results of present work, powder perform is so difficult to flow material into die cavity and mass flow has no effect on improving the strength. And, applied force to increase density of the specimen flowed material is greater than that of all repessing mode. On the contrary, the specimen flowed material became increased hardness of inside in contrast with all repressing mode, but the tensile strength were decreased with residual porosity in surface. Due to material flow characteristic of powder preform, the section of lower density in powder preform became also lower density in forged con-rod. So, preform design is very important in manufacturing powder forged connecting rod.

Prediction of a Mode behavior Using Neural Network Method (신경회로망 기법을 이용한 모드 거동 예측)

  • Shin, Young-Sug;Kim, Seong-Tae;Kim, Heon-Ju;Kim, Jae-Young;Hwang, Chul-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.768-773
    • /
    • 2011
  • The prediction method of future events using the time histories of velocity or pressure, etc., is a useful way for controlling various air vehicles. For example, the sensors of velocity or pressure can be used to extract the time mode coefficients of eigenmode of flow field, and then the result is applied to suppress wake or drag. The velocity information is mapped to the entire flow field, so this mapping function can be used to predict the future events based on the current information. The mapping function is composed of the huge amount of weight parameters, so the efficient way of finding these parameters is needed. Here, the neural network algorithm is studied to draw a mapping function using the number and location of velocity sensors.

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Kawahito, Yousuke;Kim, Jong-Do;Katayama, Seiji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.711-717
    • /
    • 2013
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other structures because of their high strength, light weight and corrosion-resistance. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective measures to reduce weight of the structures or to save rare metals. Ti and Al have great differences in materials properties, and intermetallic compounds such as Ti3Al, TiAl, TiAl3 are easily formed at the contacting surface between Ti and Al. Thus, welding or joining of Ti and Al is considered to be extremely difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50m/min in this study) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.

Design and Buckling Analysis of Earth Retaining Struts Supported by High Strength Steel Pipe and PHC Pile (고강도 강관과 PHC파일이 활용된 흙막이 버팀보의 좌굴해석 및 설계)

  • Lim, Seung Hyun;Kim, In Gyu;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.411-422
    • /
    • 2015
  • The design and buckling behavior of earth retaining system supported by high strength steel pipe and PHC pile under compression is presented in this study. Buckling analysis of various strut system was investigated according to the strut total length(30m, 60m, 90m), three types of built-up columns and connection condition. Buckling loads calculated by F.E analysis was compared with the theoretical solution corresponding to diagonal buckling mode, local and global buckling mode of main strut. The design of the built-up column struts are performed based on design guide for high strength steel pipes and P-M diagram for built-up column with two PHC pile section.