• Title/Summary/Keyword: mobility of memory

Search Result 79, Processing Time 0.028 seconds

Implementation and Memory Performance Analysis of a Service Mobility Agent System to Support Service Mobility in Home Network (홈 네트워크 환경에서 서비스 이동성 지원을 위한 에이전트 구현 방안 및 메모리 성능 분석)

  • Nam, Jong-Wook;Yu, Myung-Ju;Choi, Seong-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.80-90
    • /
    • 2010
  • In this paper, we introduce some issues to implement an agent system to support service mobility in home network environment, and describe detailed design method in terminal as well as server agent. Specifically, we describe user recognition module, signaling message receiving/parsing module of terminal agent and signaling message receiving/parsing module, multimedia switching module, memory management module of server agent. We define several parameters managed in IP sharing device and design binding table structure to support mobility. And we utilize M/M/1/K queueing theory to obtain relations between memory size, blocking probability and memory utilization. From the obtained results, we show that memory size can be predicted in server agent mounted on IP sharing device.

Nonvolatile Ferroelectric Memory Devices Based on Black Phosphorus Nanosheet Field-Effect Transistors

  • Lee, Hyo-Seon;Lee, Yun-Jae;Ham, So-Ra;Lee, Yeong-Taek;Hwang, Do-Gyeong;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.281.2-281.2
    • /
    • 2016
  • Two-dimensional van der Waals (2D vdWs) materials have been extensively studied for future electronics and materials sciences due to their unique properties. Among them, black phosphorous (BP) has shown infinite potential for various device applications because of its high mobility and direct narrow band gap (~0.3 eV). In this work, we demonstrate a few-nm thick BP-based nonvolatile memory devices with an well-known poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] ferroelectric polymer gate insulator. Our BP ferroelectric memory devices show the highest linear mobility value of $1159cm^2/Vs$ with a $10^3$ on/off current ratio in our knowledge. Moreover, we successfully fabricate the ferroelectric complementary metal-oxide-semiconductor (CMOS) memory inverter circuits, combined with an n-type $MoS_2$ nanosheet transistor. Our memory CMOS inverter circuits show clear memory properties with a high output voltage memory efficiency of 95%. We thus conclude that the results of our ferroelectric memory devices exhibit promising perspectives for the future of 2D nanoelectronics and material science. More and advanced details will be discussed in the meeting.

  • PDF

Resistance Switching Mechanism of Metal-Oxide Nano-Particles Memory on Graphene Layer

  • Lee, Dong-Uk;Kim, Dong-Wook;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.318-318
    • /
    • 2012
  • A graphene layer is most important materials in resent year to enhance the electrical properties of semiconductor device due to high mobility, flexibility, strong mechanical resistance and transparency[1,2]. The resistance switching memory with the graphene layer have been reported for next generation nonvolatile memory device[3,4]. Also, the graphene layer is able to improve the electrical properties of memory device because of the high mobility and current density. In this study, the resistance switching memory device with metal-oxide nano-particles embedded in polyimide layer on the graphene mono-layer were fabricated. At first, the graphene layer was deposited $SiO_2$/Si substrate by using chemical vapor deposition. Then, a biphenyl-tetracarboxylic dianhydride-phenylene diamine poly-amic-acid was spin coated on the deposited metal layer on the graphene mono-layer. Then the samples were cured at $400^{\circ}C$ for 1 hour in $N_2$ atmosphere after drying at $135^{\circ}C$ for 30 min through rapid thermal annealing. The deposition of aluminum layer with thickness of 200 nm was done by a thermal evaporator. The electrical properties of device were measured at room temperature using an HP4156a precision semiconductor parameter analyzer and an Agilent 81101A pulse generator. We will discuss the switching mechanism of memory device with metal-oxide nano-particles on the graphene mono-layer.

  • PDF

A Design of Temperature Management System for Preventing High Temperature Failures on Mobility Dedicated Storage (모빌리티 전용 저장장치의 고온 고장 방지를 위한 온도 관리 시스템 설계)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2024
  • With the rapid growth of mobility technology, the industrial sector is demanding storage devices that can reliably process data from various equipment and sensors in vehicles. NAND flash memory is being utilized as a storage device in mobility environments because it has the advantages of low power and fast data processing speed as well as strong external shock resistance. However, flash memory is characterized by data corruption due to long-term exposure to high temperatures. Therefore, a dedicated system for temperature management is required in mobility environments where high temperature exposure due to weather or external heat sources such as solar radiation is frequent. This paper designs a dedicated temperature management system for managing storage device temperature in a mobility environment. The designed temperature management system is a hybrid of traditional air cooling and water cooling technologies. The cooling method is designed to operate adaptively according to the temperature of the storage device, and it is designed not to operate when the temperature step is low to improve energy efficiency. Finally, experiments were conducted to analyze the temperature difference between each cooling method and different heat dissipation materials, proving that the temperature management policy is effective in maintaining performance.

High Quality Vertical Silicon Channel by Laser-Induced Epitaxial Growth for Nanoscale Memory Integration

  • Son, Yong-Hoon;Baik, Seung Jae;Kang, Myounggon;Hwang, Kihyun;Yoon, Euijoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.169-174
    • /
    • 2014
  • As a versatile processing method for nanoscale memory integration, laser-induced epitaxial growth is proposed for the fabrication of vertical Si channel (VSC) transistor. The fabricated VSC transistor with 80 nm gate length and 130 nm pillar diameter exhibited field effect mobility of $300cm^2/Vs$, which guarantees "device quality". In addition, we have shown that this VSC transistor provides memory operations with a memory window of 700 mV, and moreover, the memory window further increases by employing charge trap dielectrics in our VSC transistor. Our proposed processing method and device structure would provide a promising route for the further scaling of state-of-the-art memory technology.

User Mobility Model Based Computation Offloading Decision for Mobile Cloud

  • Lee, Kilho;Shin, Insik
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 2015
  • The last decade has seen a rapid growth in the use of mobile devices all over the world. With an increasing use of mobile devices, mobile applications are becoming more diverse and complex, demanding more computational resources. However, mobile devices are typically resource-limited (i.e., a slower-speed CPU, a smaller memory) due to a variety of reasons. Mobile users will be capable of running applications with heavy computation if they can offload some of their computations to other places, such as a desktop or server machines. However, mobile users are typically subject to dynamically changing network environments, particularly, due to user mobility. This makes it hard to choose good offloading decisions in mobile environments. In general, users' mobility can provide some hints for upcoming changes to network environments. Motivated by this, we propose a mobility model of each individual user taking advantage of the regularity of his/her mobility pattern, and develop an offloading decision-making technique based on the mobility model. We evaluate our technique through trace-based simulation with real log data traces from 14 Android users. Our evaluation results show that the proposed technique can help boost the performance of mobile devices in terms of response time and energy consumption, when users are highly mobile.

Impact of strained channel on the memory margin of Cap-less memory cell (스트레인드 채널이 무캐패시터 메모리 셀의 메모리 마진에 미치는 영향)

  • Lee, Choong-Hyeon;Kim, Seong-Je;Kim, Tae-Hyun;O, Jeong-Mi;Choi, Ki-Ryung;Shim, Tae-Hun;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.153-153
    • /
    • 2009
  • We investigated the dependence of the memory margin of the Cap-less memory cell on the strain of top silicon channel layer and also compared kink effect of strained Cap-less memory cell with the conventional Cap-less memory cell. For comparison of the characteristic of the memory margin of Cap-less memory cell on the strain channel layer, Cap-less transistors were fabricated on fully depleted strained silicon-on-insulator of 0.73-% tensile strain and conventional silicon-on-insulator substrate. The thickness of channel layer was fabricated as 40 nm to obtain optimal memory margin. We obtained the enhancement of 2.12 times in the memory margin of Cap-less memory cell on strained-silicon-on-insulator substrate, compared with a conventional SOI substrate. In particular, much higher D1 current of Cap-less memory cell was observed, resulted from a higher drain conductance of 2.65 times at the kink region, induced by the 1.7 times higher electron mobility in the strain channel than the conventional Cap-less memory cell at the effective field of 0.3MV/cm. Enhancement of memory margin supports the strained Cap-less memory cell can be promising substrate structures to improve the characteristics of Cap-less memory cell.

  • PDF

Efficient Signal Reordering Unit Implementation for FFT (FFT를 위한 효율적인 Signal Reordering Unit 구현)

  • Yang, Seung-Won;Lee, Jang-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1241-1245
    • /
    • 2009
  • As FFT(Fast Fourier Transform) processor is used in OFDM(Orthogonal Frequency Division Multiplesing) system. According to increase requirement about mobility and broadband, Research about low power and low area FFT processor is needed. So research concern in reduction of memory size and complex multiplier is in progress. Increasing points of FFT increase memory area of FFT processor. Specially, SRU(Signal Reordering Unit) has the most memory in FFT processor. In this paper, we propose a reduced method of memory size of SRU in FFT processor. SRU of 64, 1024 point FFT processor performed implementation by VerilogHDL coding and it verified by simulation. We select the APEX20KE family EP20k1000EPC672-3 device of Altera Corps. SRU implementation is performed by synthesis of Quartus Tool. The bits of data size decide by 24bits that is 12bits from real, imaginary number respectively. It is shown that, the proposed SRU of 64point and 1024point achieve more than 28%, 24% area reduction respectively.

Urban Machine Space as (Non-)Place: Interpreting Semiotic Representations of Subway Space in Daegu ((비-)장소로서 도시 기계 공간 -대구 지하철 공간의 기호적 재현에 대한 해석-)

  • Lee, Hee-Sang
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.301-322
    • /
    • 2009
  • This paper is an attempt to explore semiotic representations of subway space as the urban machine space of local mobility in terms of space, time and place. For this, the second section of the paper reviews the contours of the urban space of mobility in terms of 'machine space', 'non-place' and 'cognitive map'. The third section interprets the sings of 'spatial' and 'temporal' representations of subway space in Daegu, and suggests the implications of the semiotic representations. It is uncovered that various sign-scapes which coexist in the subway space in coordinated or contradictory ways product the space into multiple and complex techno-social spaces. That is, the spatio-temporal representations of the subway space form the space of 'non-place' on the one hand and the space of 'place' on the other hand, and involve the spatialization of 'memory' on the one hand and the spatialization of 'forgetting' on the other hand. Thus, the subway space should be regarded to be not only the space of 'mobility' which people move in and through, but also the space of 'identity' which has effects on the ways for them to see the machine space and its urban space.

Transnational Migration of Memory and Politics of Immigrant Community: The Case of Comfort Women Memorials in the U.S. (기억의 초국적 이동과 이민자 집단의 정치: 미국 위안부 소녀상을 사례로)

  • Yoon, Jihwan
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.393-408
    • /
    • 2018
  • This study aims to raise our understanding of how memory of a social group is transnationally appropriated and utilized by other subjects. A collective sense of justice for comfort women has been handed to many Koreans either in Korea or in overseas countries since the early 1990s. In the U.S., the first comfort women monument was established in Palisades Park, New Jersey by Korean-Americans and local politicians as they wanted to strengthen the common sense of Korean ethnicity with the symbolic power of the memoryscape. Exploring the diffusion of comfort women memorials in the U.S., this study examines the complexity and multilayered structure of memory politics and its transnational mobility, which are connected to Korean-Americans' struggle for belonging.