• 제목/요약/키워드: mobile control

검색결과 4,002건 처리시간 0.032초

적응 퍼지 논리를 이용한 Mobile Vehicle의 Lateral 제어기 설계 및 적용 (A Lateral Controller for the Mobile Vehicle Using Adaptive Fuzzy Logics)

  • 김명중;임형순;이창구;김성중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.531-533
    • /
    • 1999
  • The main aim of this paper is to investigate the possibility of applying fuzzy control algorithms to a microprocessor-based servomotor controller which requires faster and more accurate response compared with many other industrial processes. In addition, this study deals with the control of the lateral motion of a mobile vehicle. A adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve control of the lateral motion of the vehicle.

  • PDF

궤도추종을 위한 메니퓰레이터의 적응 추종 제어에 관한 연구 (A Study on Adaptive Tracking Control of a Mobile Manipulator for Contour Following)

  • 서진호;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.394-396
    • /
    • 2005
  • In this paper, we propose an adaptive tracking control method of a mobile manipulator for contour following with a kinematic model to have several unknown dimension parameters. Moreover, we will use the decentralized control method to design two independent controllers for two subsystems. The proposed controllers in this paper are based on the Lyapunov function in order to guarantee the stability of whole system for contour following task. The updated laws are also designed to estimated the unknown dimension parameters. Finally, the simulation results are presented to show the validity of the proposed controllers in this paper.

  • PDF

임베디드 디바이스에 기반한 이동로봇의 터치기반 원격제어 (Touch-based Remote Control of Mobile Robot based on Embedded Device)

  • 노준호;황유건;서용호;양태규
    • 정보통신설비학회논문지
    • /
    • 제10권2호
    • /
    • pp.62-67
    • /
    • 2011
  • Embedded device that can support mobile computing environment has been popular recently. In this study, we propose a new robot application based on embedded device to control a mobile robot using a touch-based remote interface with information display of robot trajectory and sensors. We developed the robot application using Microsoft's.Net Compact Framework and Zigbee data communication with Windows CE kernel based embedded device. In experiment, we evaluated the feasibility and the effectiveness of the proposed system by showing a remote robot control using touch interface and a information display of the robot.

  • PDF

Analysis of Indoor Robot Localization Using Ultrasonic Sensors

  • Naveed, Sairah;Ko, Nak Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권1호
    • /
    • pp.41-48
    • /
    • 2014
  • This paper analyzes the Monte Carlo localization (MCL) method, which estimates the pose of an indoor mobile robot. A mobile robot must know where it is to navigate in an indoor environment. The MCL technique is one of the most influential and popular techniques for estimation of robot position and orientation using a particle filter. For the analysis, we perform experiments in an indoor environment with a differential drive robot and ultrasonic range sensor system. The analysis uses MATLAB for implementation of the MCL and investigates the effects of the control parameters on the MCL performance. The control parameters are the uncertainty of the motion model of the mobile robot and the noise level of the measurement model of the range sensor.

마그네틱 콤파스 기반의 전 방향 로봇의 방위각 제어 (Azimuth Tracking Control of an Omni-Directional Mobile Robot(ODMR) Using a Magnetic Compass)

  • 이정형;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.132-138
    • /
    • 2009
  • In this paper, control of an omni-directional mobile robot is presented. Relying on encoder measurements to define the azimuth angle yields the dead-reckoned situation which the robot fails in localization. The azimuth angle error due to dead-reckoning is compensated and corrected by the magnetic compass sensor. Noise from the magnetic compass sensor has been filtered out. Kinematics and dynamics of the omni-directional mobile robot are derived based on the global coordinates and used for simulation studies. Experimental studies are also conducted to show the correction by the magnetic compass sensor.

Ubiquitous Sensor Network에서 안전성 증가를 위한 신뢰모델과 신뢰값에 관한 프로토콜 설계 (Design of Secure Protocol based on trust model and trust values for Ubiquitous Sensor Networks)

  • 장근원;서장원
    • 디지털산업정보학회논문지
    • /
    • 제4권3호
    • /
    • pp.9-18
    • /
    • 2008
  • Mobile devices do not need the fixed network infrastructure in ad-hoc network, these devices communicate each other through the distributed control. Accordingly, mobile devices can discover several services using dynamic searching method and provide safely public ownership of these services. Ad-hoc network needs the distributed control and topology of dynamic network because the limited power for processing and network communication. This paper is devoted to provide the secure protocol that provides efficient services discovery using SDP(Service Discovery Protocol) and considers the security requirements. Proposed protocol provides the distributed control based on PKI without central server, the discovery of trusted service, secure telecommunication, the identification among mobile devices, and service access control by user authority.

Geometric Kinematics and Applications of a Mobile Robot

  • Kim, Dong-Sung;Kwon, Wook-Hyun;Park, Hong-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.376-384
    • /
    • 2003
  • In this paper, the simple geometric kinematics of a three-wheeled holonomic mobile robot is proposed. Wheel architecture is developed for the holonomic mobile platform in order to provide omni-directional motions by three individually driven and steered wheels. Three types of basic motions are proposed for the path generation of the developed mobile robot. All paths of the mobile robot can be achieved through a combination of the proposed basic motion trajectories. The proposed method is verified through computer simulations and the developed mobile robot.

Robust Adaptive Control of a Nonholonomic Mobile Robot

  • Kim, M. S.;Lee, J. J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.5-8
    • /
    • 1999
  • The main stream of researches on the mobile robot is planning motions of the mobile robot under nonholonomic constraints while only considering kinematic model of a mobile robot. These researches, however, assume that there is some kind of dynamic controller which can produce perfectly the same velocity that is necessary for the kinematic controller. Moreover, there are little results about the problem of integrating the nonholonomic kinematic controller and the dynamic controller for a mobile robot. Also the literature on the robustness of the controller in the presence of uncertainties or external disturbances in the dynamical model of a mobile robot is very few. Thus, in this paper, the robust adaptive controller which can achieve velocity tracking while considering not only kinematic model but also dynamic model of the mobile robot is proposed. The stability of the dynamic system will be shown through the Lyapunov method.

  • PDF

A Study on the Information Security Control and Management Process in Mobile Banking Systems

  • Kim, So Young;Kim, Myong Hee;Park, Man-Gon
    • 한국멀티미디어학회논문지
    • /
    • 제18권2호
    • /
    • pp.218-232
    • /
    • 2015
  • According to the development of information processing technology and mobile communication technology, the utilization of mobile banking systems is drastically increasing in banking system. In the foreseeable future, it is expected to increase rapidly the demands of mobile banking in bank systems with the prevalence of smart devices and technologies. However, the keeping 'security' is very important in banking systems that handles personal information and financial assets. But it is very difficult to improve the security of banking systems only with the vulnerabilities and faults analysis methods of information security. Hence, in this paper, we accomplish the analysis of security risk factor and security vulnerability that occur in mobile banking system. With analyzed results, we propose the information security control and management processes for assessing and improving security based on the mechanisms which composes mobile banking system.

Lynx Mobile Mapper를 이용한 레이저스캐너 기반 차량 MMS의 정확도 평가 (Accuracy Estimation of Laser scanning Mobile Mapping System using Lynx Mobile Mapper)

  • 정태준;윤홍식;황진상;김용현;위광재
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.69-71
    • /
    • 2010
  • In this paper, we focus on the accuracy estimation of laser scanning mobile mapping system using Lynx Mobile Mapper. For this, we surveyed checkpoints(181 points) in study areas. A method to estimate the accuracy of laser scanning mobile mapping system based on the measurement range, interval of control points and gps signal environments. As a result, to ensure reliable measurement results, we must be made a plan considering Measure range(60m or under) and operation. The estimation results showed the need for improving accuracy using control points about 150m interval according to environment error source.

  • PDF