• Title/Summary/Keyword: mixed integer programming (MIP)

Search Result 63, Processing Time 0.025 seconds

An Optimization Model Based on Combining Possibility of Boundaries for Districting Problems (경계 결합 가능성 기반 구역설정 최적화 모델)

  • Kim, Kamyoung
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.3
    • /
    • pp.423-437
    • /
    • 2014
  • Districting is a spatial decision making process to make a new regional framework for affecting human activities. Natural barriers such as rivers and mountains located within a reorganized district may reduce the efficiency of reorganized human activities. This implies that it is necessary to consider boundary characteristics in a districting process. The purpose of this research is to develop a new spatial optimization model based on boundary characteristics for districting problems. The boundary characteristics are evaluated as continuous value expressing the possibility of combining adjacent two basic spatial units rather than a dichotomous value with 1 or 0 and are defined as an objective function in the model. In addition, the model has explicitly formulated contiguity constraints as well as constraints enforcing demand balance among districts such as population and area. The boundary attributes are categorized into physical and relational characteristics. Suitability analysis is used to combine various variables related to each boundary characteristic and to evaluate the coupling possibility between two neighboring basic units. The model is applied to an administrative redistricting problem. The analytical results demonstrate that various boundary characteristics could be modeled in terms of mixed integer programming (MIP).

  • PDF

Radio Parameter Optimization for Indoor WiBro Radio Access Station (소형 실내 와이브로 기지국을 위한 무선 파라미터 최적화)

  • Han, Kwang-Hun;Na, Min-Soo;Choi, Young-Kyu;Kim, Dong-Myoung;Choi, Sung-Hyun;Han, Ki-Young;Yoon, Soon-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.776-785
    • /
    • 2008
  • Compared with the existing cellular base station whose radio parameters are configured manually, the small base station named as self-configurable base station configures its radio parameters automatically by the central controller. When installing the self-configurable base station, it should be considered primarily that the seamless coverage for the target area is secured while the signal interference to the existing cellular service area must to be minimized. In order to achieve this, it is very important to select the correct radio parameters, e.g., transmission power and working frequency. In this work, we formulate and solve the optimization problem by using mixed integer programming to optimize the air parameter for the self-configurable base stations.

An Efficient Genetic Algorithm for the Allocation and Engagement Scheduling of Interceptor Missiles (효율적인 유전 알고리즘을 활용한 요격미사일 할당 및 교전 일정계획의 최적화)

  • Lee, Dae Ryeock;Yang, Jaehwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.88-102
    • /
    • 2016
  • This paper considers the allocation and engagement scheduling problem of interceptor missiles, and the problem was formulated by using MIP (mixed integer programming) in the previous research. The objective of the model is the maximization of total intercept altitude instead of the more conventional objective such as the minimization of surviving target value. The concept of the time window was used to model the engagement situation and a continuous time is assumed for flying times of the both missiles. The MIP formulation of the problem is very complex due to the complexity of the real problem itself. Hence, the finding of an efficient optimal solution procedure seems to be difficult. In this paper, an efficient genetic algorithm is developed by improving a general genetic algorithm. The improvement is achieved by carefully analyzing the structure of the formulation. Specifically, the new algorithm includes an enhanced repair process and a crossover operation which utilizes the idea of the PSO (particle swarm optimization). Then, the algorithm is throughly tested on 50 randomly generated engagement scenarios, and its performance is compared with that of a commercial package and a more general genetic algorithm, respectively. The results indicate that the new algorithm consistently performs better than a general genetic algorithm. Also, the new algorithm generates much better results than those by the commercial package on several test cases when the execution time of the commercial package is limited to 8,000 seconds, which is about two hours and 13 minutes. Moreover, it obtains a solution within 0.13~33.34 seconds depending on the size of scenarios.

A Mathematical Model for Optimal Communication Scheduling between Multiple Satellites and Multiple Ground Stations (다수의 인공위성-지상국 간 통신 스케줄 최적화 모형)

  • Jeong, Eugine;Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.39-49
    • /
    • 2018
  • In the satellite operation phase, a ground station should continuously monitor the status of the satellite and sends out a tasking order, and a satellite should transmit data acquired in the space to the Earth. Therefore, the communication between the satellites and the ground stations is essential. However, a satellite and a ground station located in a specific region on Earth can be connected for a limited time because the satellite is continuously orbiting the Earth, and the communication between satellites and ground stations is only possible on a one-to-one basis. That is, one satellite can not communicate with plural ground stations, and one ground station can communicate with plural satellites concurrently. For such reasons, the efficiency of the communication schedule directly affects the utilization of the satellites. Thus, in this research, considering aforementioned unique situations of spacial communication, the mixed integer programming (MIP) model for the optimal communication planning between multiple satellites and multiple ground stations (MS-MG) is proposed. Furthermore, some numerical experiments are performed to verify and validate the mathematical model. The practical example for them is constructed based on the information of existing satellites and ground stations. The communicable time slots between them were obtained by STK (System Tool Kit), which is a well known professional software for space flight simulation. In the MIP model for the MS-MG problems, the objective function is also considered the minimization of communication cost, and ILOG CPLEX software searches the optimal schedule. Furthermore, it is confirmed that this study can be applied to the location selection of the ground stations.

A Study on the Improvement of Inter-Terminal Transportation Using Buffer Space (완충지역을 활용한 타부두 환적 컨테이너 운송 개선 방안)

  • Park, Hyoung-Jun;Shin, Jae-Young;Choi, Yang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.314-324
    • /
    • 2021
  • Competition between ports around the world is intensifying to attract transshipment cargo. However, recently, there have been concerns about the departure of transshipment cargo volume at Busan Port, such as the lifting of the cabotage policy in China's shipping sector and the implementation of a safe fare system. In terms of operation, terminal congestion and vehicle waiting time are seriously occurring due to imbalance in the transshipment volume of each terminal and vehicles concentrated in a specific time period. In this paper, we propose a method of inter-terminal transportation (ITT) using buffer space to solve the problem caused by inefficient ITT systems and presented a mixed integer programming (MIP) for the problem. The effect of using the buffer space was analyzed for various work volumes and capacity fluctuation ranges by applying the terminal congestion pattern and ITT vehicle in/out pattern based on the Busan New Port data.

Computational Study of Cutting Planes for a Lot-Sizing Problem in Branch-and-Cut Algorithm (Branch-and-Cut 알고리즘에서 Lot-Sizing 문제에 대한 Cutting Planes의 전산 성능 연구)

  • Chung, Kwanghun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.3
    • /
    • pp.23-38
    • /
    • 2015
  • In this paper, we evaluate the strength of three families of cutting planes for a lot-sizing problem. Lot-sizing problem is very basic MIP model for production planning and many strong valid inequalities have been developed for a variety of relaxations in the literature. To use three families of cutting planes in Branch-and-Cut framework, we develop separation algorithms for each cut and implement them in CPLEX. Then, we perform computational study to compare the effectiveness of three cuts for randomly generated instances of the lot-sizing problem.

Heuristic Approach for Lot Sizing and Scheduling Problem with State Dependent Setup Time

  • Han, Jung-Hee
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.74-83
    • /
    • 2011
  • In this paper, we consider a new lot-sizing and scheduling problem (LSSP) that minimizes the sum of production cost, setup cost and inventory cost. Setup carry-over, setup overlapping, state dependent setup time as well as demand splitting are considered. For this LSSP, we develop a mixed integer programming (MIP) model, of which the size does not increase even if we divide a time period into a number of micro time periods. Also, we develop an efficient heuristic algorithm by combining a decomposition scheme with a local search procedure. Test results show that the developed heuristic algorithm finds a good quality (in practice, even better) feasible solution using far less computation time compared with the CPLEX, a competitive MIP solver.

A Splitter Location-Allocation Problem in Designing FTTH-PON Access Networks (FTTH-PON 가입자망 설계에서 Splitter Location-Allocation 문제)

  • Park, Chan-Woo;Lee, Young-Ho;Han, Jung-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.2
    • /
    • pp.1-14
    • /
    • 2011
  • In this paper, we deal with an access network design problem of fiber-to-the-home passive optical network (FTTH-PON). The FTTH-PON network design problem seeks to minimize the total cost of optical splitters and cables that provide optical connectivity between central office and subscribers. We develop a flow-based mixed integer programming (MIP) model with nonlinear link cost. By developing valid inequalities and preprocessing rules, we enhance the strength of the proposed MIP model in generating tight lower bounds for the problem. We develop an effective Tabu Search (TS) heuristic algorithm that provides good quality feasible solutions to the problem. Computational results demonstrate that the valid inequalities and preprocessing rules are effective for improving the LP-relaxation lower bound and TS algorithm finds good quality solutions within reasonable time bounds.

A Study on the Validity of the Infrastructure Construction Cost for the Commercialization of Online Electric Vehicles (온라인 전기자동차의 상용화를 위한 인프라 구축비용 타당성에 대한 연구)

  • Song, Yong Uk;Park, Sangun;Kim, Wooju;Hong, June S.;Jeon, DongKyu;Lee, Sangheon;Park, Jonghan
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.1
    • /
    • pp.71-95
    • /
    • 2013
  • This study aims to validate the cost of building the infrastructure to commercialize online electric vehicles. For that purpose, we probe the cost to construct the necessary infrastructure for online electric vehicles regarding Seoul area public bus transit. OLEV and PEV are considered as alternative electric vehicle schemes, and each of them has their own cons and pros in terms of rechargeable battery cost and charger cost. An optimization model which minimizes the cost to install online electric bus feeding devices is proposed in order to compare the total costs of the two alternative schemes. We developed a Mixed Integer Programming model to locate the feeding devices of several different lengths at each bus stops. Furthermore, we implemented a computer simulator to obtain the parameters which will be used in the MIP model and a Web-based system which determines the optimal location of infrastructure for the whole city area from a result of the MIP model. The cost comparison result shows that the total cost of OLEV is cheaper than that of PEV considering the real data of Seoul area public transit, and, as a result, confirms the feasibility of the commercialization of OLEV.

A Heuristic for Vendor-managed Inventory/Distribution Problems in the Retail Supply Chain (소매점 공급사슬에서 공급자주도 재고/분배 문제를 위한 발견적 해석)

  • Hong, Sung-Chul;Park, Yang-Byung
    • Korean Management Science Review
    • /
    • v.25 no.1
    • /
    • pp.107-121
    • /
    • 2008
  • As to more efficiently manage the inventory in the retail supply chain and to meet the customer demand in a timely manner, vendor-managed inventory (VMI) has been widely accepted, which manages inventory in the retail supply chain via sharing information and collaborating with the retailers. Applying VMI generates vendor-managed inventory/distribution problem (VMIDP), which involves inventory management for both the vendor and the retailers, and the design of vehicle routes for delivery, to minimize the total operating cost in the supply chain. In this paper, we suggest a mixed integer programming (MIP) model to obtain the optimal solution for VMIDP in a two-echelon retail supply chain, and develop an efficient heuristic based on the operating principles of the MIP model. To evaluate the performance of the heuristic, its solution was compared with the one of the MIP model on a total of twenty seven test problems. As a result, the heuristic found optimal solutions on seven problems in a significantly reduced time, and generated a 4.3% error rate of total cost in average for all problems. The heuristic is applied to the case problem of the local famous franchise company together with GIS, showing that it is capable of providing a solution efficiently in a relatively short time even in the real world situation.