• Title/Summary/Keyword: mitigate

Search Result 2,580, Processing Time 0.025 seconds

Design of Radar Signal Processing System for Drone Detection (드론 검출을 위한 레이다 신호처리 시스템 설계)

  • Hong-suk Kim;Gyu-ri Ban;Ji-hun Seo;Yunho Jung
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.5
    • /
    • pp.601-609
    • /
    • 2024
  • In this paper, we present the design and implementation results of a system that classifies drones from other objects using an FMCW (frequency-modulated continuous wave) radar sensor. The proposed system detects various objects through a four-stage signal processing procedure, consisting of FFT, CFAR, clustering, and tracking, using signals received from the radar sensor. Subsequently, a deep learning process is conducted to classify the detected objects as either drones or other objects. To mitigate the high computational demands and extensive memory requirements of deep learning, a BNN (binary neural network) structure was applied, binarizing the CNN (convolutional neural network) operations. The performance evaluation and verification results demonstrated a drone classification accuracy of 89.33%, with a total execution time of 4 ms, confirming the feasibility of real-time operation.

Flight Test Items of Metal Brake Pad for Part 25 Aircraft (Part 25급 항공기용 금속계 제동패드의 비행시험 항목)

  • Minji Kim;Kyung-taek Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.5
    • /
    • pp.670-677
    • /
    • 2024
  • In this study, the flight test measurement data and flight test items for metal-based brake pads for transport aircraft were derived through the analysis of Korea and the U.S. aviation-related regulations, technical standards and airworthiness standards. During the flight test, the measurement items should be measured at all times, such as aircraft altitude, speed, aircraft condition, wind direction, wind speed, and air-temperature. The flight test items of the brake pad should be quantitatively evaluated for stopping performance during landing, fuse plug integrity, stopping performance at reject take-off situations, anti-skid compatibility during landing and parking brake capability. Additionally, qualitative evaluation of the flight test pilot's aircraft steering characteristics under each test condition is required. The identification of risk factors for each test item and measures to mitigate risk factors must be approved in advance before the flight test, and the risk factors must be reevaluated to maintain suitability for the flight test during the flight test, and the results must be documented.

Protective effect of 6'-Sialyllactose on LPS-induced macrophage inflammation via regulating Nrf2-mediated oxidative stress and inflammatory signaling pathways

  • Hami Yu;Yujin Jin;Hyesu Jeon;Lila Kim;Kyung-Sun Heo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.6
    • /
    • pp.503-513
    • /
    • 2024
  • Macrophages play a central role in cardiovascular diseases, like atherosclerosis, by accumulating in vessel walls and inducing sustained local inflammation marked by the release of chemokines, cytokines, and matrix-degrading enzymes. Recent studies indicate that 6'-sialyllactose (6'-SL) may mitigate inflammation by modulating the immune system. Here, we examined the impact of 6'-SL on lipopolysaccharide (LPS)-induced acute inflammation using RAW 264.7 cells and a mouse model. In vivo, ICR mice received pretreatment with 100 mg/kg 6'-SL for 2 h, followed by intraperitoneal LPS injection (10 mg/kg) for 6 h. In vitro, RAW 264.7 cells were preincubated with 6'-SL before LPS stimulation. Mechanistic insights were gained though Western blotting, qRT-PCR, and immunofluorescence analysis, while reactive oxygen species (ROS) production was assessed via DHE assay. 6'-SL effectively attenuated LPS-induced p38 MAPK and Akt phosphorylation, as well as p65 nuclear translocation. Additionally, 6'-SL inhibited LPS-induced expression of tissue damage marker MMP9, IL-1β, and MCP-1 by modulating NF-κB activation. It also reduced ROS levels, mediated by p38 MAPK and Akt pathways. Moreover, 6'-SL restored LPS-suppressed Nrf2 and HO-1 akin to specific inhibitors SB203580 and LY294002. Consistent with in vitro results, 6'-SL decreased oxidative stress, MMP9, and MCP-1 expression in mouse endothelium following LPS-induced macrophage activation. In summary, our findings suggest that 6'-SL holds promise in mitigating atherosclerosis by dampening LPS-induced acute macrophage inflammation.

Increased ER stress by depletion of PDIA6 impairs primary ciliogenesis and enhances sensitivity to ferroptosis in kidney cells

  • Joon Bum Kim;Hyejin Hyung;Ji-Eun Bae;Soyoung Jang;Na Yeon Park;Doo Sin Jo;Yong Hwan Kim;Dong Kyu Choi;Hong-Yeoul Ryu;Hyun-Shik Lee;Zae Young Ryoo;Dong-Hyung Cho
    • BMB Reports
    • /
    • v.57 no.10
    • /
    • pp.453-458
    • /
    • 2024
  • Primary cilia are crucial for cellular balance, serving as sensors for external conditions. Nephronophthisis and related ciliopathies, which are hereditary and degenerative, stem from genetic mutations in cilia-related genes. However, the precise mechanisms of these conditions are still not fully understood. Our research demonstrates that downregulating PDIA6, leading to cilia removal, makes cells more sensitive to ferroptotic death caused by endoplasmic reticulum (ER) stress. The reduction of PDIA6 intensifies the ER stress response, while also impairing the regulation of primary cilia in various cell types. PDIA6 loss worsens ER stress, hastening ferroptotic death in proximal tubule epithelial cells, HK2 cells. Counteracting this ER stress can mitigate PDIA6 depletion effects, restoring both the number and length of cilia. Moreover, preventing ferroptosis corrects the disrupted primary ciliogenesis due to PDIA6 depletion in HK2 cells. Our findings emphasize the role of PDIA6 in primary ciliogenesis, and suggest its absence enhances ER stress and ferroptosis. These insights offer new therapeutic avenues for treating nephronophthisis and similar ciliopathies.

Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea (이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Kyu-Tae;Park, Young-Gyu;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2009
  • Carbon dioxide capture and storage (CCS) technology has been regarded as one of the most possible and practical option to reduce the emission of carbon dioxide ($CO_2$) and consequently to mitigate the climate change. Korean government also have started a 10-year R&D project on $CO_2$ storage in sea-bed geological structure including gas field and deep saline aquifer since 2005. Various relevant researches are carried out to cover the initial survey of suitable geological structure storage site, monitoring of the stored $CO_2$ behavior, basic design of $CO_2$ transport and storage process and the risk assessment and management related to $CO_2$ leakage from engineered and geological processes. Leakage of $CO_2$ to the marine environment can change the chemistry of seawater including the pH and carbonate composition and also influence adversely on the diverse living organisms in ecosystems. Recently, IMO (International Maritime Organization) have developed the risk assessment and management framework for the $CO_2$ sequestration in sub-seabed geological structures (CS-SSGS) and considered the sequestration as a waste management option to mitigate greenhouse gas emissions. This framework for CS-SSGS aims to provide generic guidance to the Contracting Parties to the London Convention and Protocol, in order to characterize the risks to the marine environment from CS-SSGS on a site-specific basis and also to collect the necessary information to develop a management strategy to address uncertainties and any residual risks. The environmental risk assessment (ERA) plan for $CO_2$ storage work should include site selection and characterization, exposure assessment with probable leak scenario, risk assessment from direct and in-direct impact to the living organisms and risk management strategy. Domestic trial of the $CO_2$ capture and sequestration in to the marine geologic formation also should be accomplished through risk management with specified ERA approaches based on the IMO framework. The risk assessment procedure for $CO_2$ marine storage should contain the following components; 1) prediction of leakage probabilities with the reliable leakage scenarios from both engineered and geological part, 2) understanding on physio-chemical fate of $CO_2$ in marine environment especially for the candidate sites, 3) exposure assessment methods for various receptors in marine environments, 4) database production on the toxic effect of $CO_2$ to the ecologically and economically important species, and finally 5) development of surveillance procedures on the environmental changes with adequate monitoring techniques.

  • PDF

Diagnostic assessment on vegetation damage due to hydrofluoric gas leak accident and restoration planning to mitigate the damage in a forest ecosystem around Hube Globe in Gumi (구미 휴브글로브 주변 삼림생태계에서 불화수소가스 유출 사고에 기인한 식생피해 진단 및 그 피해를 완화시키기 위한 복원 계획)

  • Kim, Gyung Soon;An, Ji Hong;Lim, Chi Hong;Lim, Yun Kyung;Jung, Song Hie;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • We obtained the following results from investigation on vegetation damage from 5 to 6 August, 2013, about one year after an accident that hydrofluoric acid leaked from a chemical maker, Hube Globe in Gumi. Pinus densiflora and Pinus strobus showed very severe damage. Ginko biloba, Quercus acutissima, Pinus rigida, Salix glandulosa, Hibiscus syriacus, and Lagerstroemia indica showed severe damage. Quercus variabilis, Lespedeza cyrtobotrya, and Miscanthus sinensis showed moderate damage. Quercus aliena, Smilax china, Arundidinella hirta, Ailanthus altissima, Robinia pseudoacacia, and Paulowinia coreana showed slight damage. We did not find any plants without leaf damage around there. This result means that fluoride damage still persists in this area as was known that fluoride remains for a long time in air, soil and water and exerts negative effects at all levels of an ecosystem. In addition, fluoride content contained in plant leaf depended on the distance from a fertilizer producing factory and vegetation damage tended to proportionate to the concentration in the Yeocheon industrial complex. In these respects, a measure for removal or detoxification of the remaining fluoride is urgently required around the hydrofluoric acid leak spot. Fertilizing of dolomite containing Ca and Mg, which can trap fluoride, was prepared as one of the restoration plans. In addition, phosphate fertilizing was added in order to enhance soil ameliorating effects. Furthermore, we recommend the introduction of tolerant plants as the second measure to mitigate fluoride damage. As the tolerant plants to make a new forest by replacing trees died due to hydrofluoric acid gas damage, we recommended Q. aliena and S. china, A. hirta, etc. were recommended as plant species to add mantle vegetation to the forest margin to ensure stable interior environment of the forest.

Optimizated pH and Mitigated Ammonia Emission in Pig Manure Slurry by Soluble Carbohydrate Supplementation (수용성 탄수화물을 이용한 분뇨슬러리 pH 적정화 및 암모니아 휘산의 저감)

  • Lim, Joung-Soo;Hwang, Ok-Hwa;Lee, Sang Ryong;Cho, Sung-Back;Kwag, Jung-Hoon;Lee, Dong-Hyun;Jung, Min Woong;Han, Deug-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.103-110
    • /
    • 2017
  • In Concentrated Animal Feeding Operations(CAFOs), emission of ammonia from stored manure contributes negatively on the wellness of livestock. In CAFOs facilities, indoor aerial ammonia concentration oftentime surpasses the critical level potentially harmful to livestock's immune system. Understandably, numerous researches to control aerial ammonia have been conducted in countries where CAFOs were practiced for many decades. Some innovative technologies, such as scrubber, bio-filter, and additives emerged, as a result. Among them, microbial additives became popular in Korea, due to an easiness of use and affordability. However, microbial additives still have some weaknesses. Their price is still high enough to discourage farmers who run a small scale farm and their effectiveness are still questioned by many users and researchers. In the present study, we found soluble carbohydrates, such as sugar, glucose, and molasses, when supplemented to pig slurry manure, can mitigate ammonia emission. To be more specific, pig manure slurry(120kg), stored in container(200L), was supplemented with sugar at 0.1%(w/w) and was, subsequently, monitored for pH and aerial ammonia for next 10 days. From this experiment, it was found that the sugar supplementation was effective in mitigating the aerial ammonia concentration (33% in average) when monitored daily. Also, the pH of manure slurry was maintained at relatively low level(8.2) in sugar-supplemented manure slurry while it was elevated to 8.5 in untreated slurry. Conclusively, the obtained data suggest that soluble carbohydrate can mitigate ammonia emission by acidifying manure slurry. Additionally, it can be suggested that soluble carbohydrates, such as sugar, glucose, and molasses, can be reasonable choices for animal farmers who have been looking for an alternative choice to replace expensive microbial additives.

Overall risk analysis of shield TBM tunnelling using Bayesian Networks (BN) and Analytic Hierarchy Process (AHP) (베이지안 네트워크와 AHP (Analytic Hierarchy Process)를 활용한 쉴드 TBM 터널 리스크 분석)

  • Park, Jeongjun;Chung, Heeyoung;Moon, Joon-Bai;Choi, Hangseok;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.453-467
    • /
    • 2016
  • Overall risks that can occur in a shield TBM tunnelling are studied in this paper. Both the potential risk events that may occur during tunnel construction and their causes are identified, and the causal relationship between causes and events is obtained in a systematic way. Risk impact analysis is performed for the potential risk events and ways to mitigate the risks are summarized. Literature surveys as well as interviews with experts were made for this purpose. The potential risk events are classified into eight categories: cuttability reduction, collapse of a tunnel face, ground surface settlement and upheaval, spurts of slurry on the ground, incapability of mucking and excavation, and water leakage. The causes of these risks are categorized into three areas: geological, design and construction management factors. Bayesian Networks (BN) were established to systematically assess a causal relationship between causes and events. The risk impact analysis was performed to evaluate a risk response level by adopting an Analytic Hierarchy Process (AHP) with the consideration of the downtime and cost of measures. Based on the result of the risk impact analysis, the risk events are divided into four risk response levels and these levels are verified by comparing with the actual occurrences of risk events. Measures to mitigate the potential risk events during the design and/or construction stages are also proposed. Result of this research will be of the help to the designers and contractors of TBM tunnelling projects in identifying the potential risks and for preparing a systematic risk management through the evaluation of the risk response level and the migration methods in the design and construction stage.

Experimental Study on Effectiveness of Wave Reduction and Prevention Erosion of Nourishment Sand Using the Cell Group (Cell Group을 이용한 파랑저감 및 양빈사 유실방지에 관한 실험적 연구)

  • Park, Sang Kil;Park, Hong Bum;Kim, Young Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.269-277
    • /
    • 2017
  • Recently, a submerged breakwater has been installing to prevent the erosion of shoreline everywhere. Artificially submerged breakwater is made to minimize the loss of nourishment sand beach erosion. For this reason, it has been indiscriminately constructed submerged breakwater that is planned in the country throughout. However, maintenance purposes to keep the shoreline of the beach is a method that is quite a few problems. There are also disadvantages such as expensive construction costs, ocean space utilization, water pollution and shoreline modification. In addition, person of utilizing the space of the ocean leisure does not like that because of the disconnection of ocean space. The beaches such as Gwanganri are artificially supplying nourishment sand to maintain the beach. The flexible construction method refers to a structure that is installed as a flexible material instead of submerged breakwater to prevent the loss of nourishment sand. In order to develop a new method to mitigate shoreline erosion, this study was carried out a hydraulic model experiment by installing a cell group as an example of the flexible method. Namely, in order to prevent the loss of nourishment sand, we decided to develop a new method that can mitigate the degree of beaches erosion by using cell group instead of submerged breakwater. In the two dimensional fixed hydraulic experiment, was carried out the effect reducing of wave height and the rate of low reflection due to the installation of the cell group. In movable bed experiment, the capture rate of the nourishment sand and the erosion prevention rate of the nourishment sand was performed for stability of shoreline. Therefore, according to the results of the hydraulic tests, it was possible to maintain the stable beaches due to installing the cell group on the erosion beaches, due to the effect of reducing wave height, the low reflection, the erosion prevention rate of nourishment sand, the high capture rate of nourishment sand.

Use of Drainage Water as Irrigation Resource in the Paddy Field to Mitigate Non-point Source Pollutants (배수로 물 관개 벼농사의 비점오염원 경감효과)

  • Kim, Choon-Song;Ko, Jee-Yeon;Lee, Jae-Saeng;Jung, Ki-Yeol;Park, Sung-Tae;Ku, Yeon-Chung;Kang, Hang-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.107-115
    • /
    • 2007
  • Objective of this study was to assess the efficient rice cultivation practice to mitigate the non-point source pollutants loading to the adjacent watershed. Cultivation practices consisted of machine transplanting, direct seeding on dry paddy, and no tillage in which no fertilizer and pesticide were applied to paddy field. Water in drainage canal was used as irrigation source during the entire rice growing season. Loading of the non-point source pollutants to the adjacent small stream was mitigated by all treatments. Rice yield, total biomass (rice + weeds), and uptake T-N, $P_2O_5$, and $K_2O$ were higher in machine transplanting practice than those in direct seeding and no tillage practices. However, the purification effects of non-point source pollutants were followed in orders of no tillage > direct seeding > machine transplanting due to quantity of irrigation water. The annual purification quantity of T-N, T-P, and K by rice cultivations ranged from 46 to 369 kg $ha^{-1}$, 4.1 to 16.4 kg $ha^{-1}$, and 55 to 238 kg $ha^{-1}$, respectively, during the entire rice growing season. Results revealed that no tillage practice of rice cultivation was the best management option in reducing the loading of the non-point source pollutants from the drainage canal into stream.