Acknowledgement
본 연구는 2024년도 정부 (과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행되었으며 (No. 2017-0-00528), CAD tool은 IDEC에 의해 지원되었음.
References
- C. Briese and L. Guenther, "Deep learning with semi-synthetic training images for detection of non-cooperative UAVs," in 2019 International Conference on Unmanned Aircraft Systems, Atlanta: GA, pp. 981-988, Jun. 2019. DOI: 10.1109/ICUAS.2019.8797731.
- M. Jung and S. Lee, "Object perception algorithm based on LiDAR for autonomous vehicle," in 2017 IEIE Fall Conference, Incheon: Korea, pp. 639-642, Nov. 2017. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07276399.
- C. J. Li and H. Ling, "An investigation on the radar signatures of small consumer drones," in IEEE Antennas and Wireless Propagation Letters, Vol. 16, pp. 649-652, Jul. 2017. DOI: 10.1109/LAWP.2016.2594766.
- X. Wang, H. Liang and P. Wang, "Detection and tracking of UAVs using interferometric radar," in 2019 International Radar Conference, Toulon: France, pp. 1-6, Sep. 2019. DOI: 10.1109/RADAR41533.2019.171312.
- H. Rohling and M. Kronauge, "New radar waveform based on a chirp sequence," in 2014 International Radar Conference, Lille: France, pp. 1-4, Oct. 2014. DOI: 10.1109/RADAR.2014.7060246.
- E. Hyun and J.-H. Lee, "Multi-target tracking scheme using a track management table for automotive radar systems," in 2016 17th International Radar Symposium, Krakow: Poland, pp.1-5, May. 2016. DOI: 10.1109/IRS.2016.7497283.
- L. Wang, J. Tang and Q. Liao, "A study on radar target detection based on deep neural networks," in IEEE Sensors Letters, Vol. 3, No. 3, pp. 1-4, Mar. 2019. DOI: 10.1109/LSENS.2019.2896072.
- J. H. Lee, Y. Yim, H. Choi, and Y. H. Jung, "Deep learning-based drone detection through sensor fusion technique of image sensor and FMCW radar," in 2020 IEIE Summer Conference, Jeju: Korea, pp. 690-691, Aug. 2020. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10447956.
- H. V. Quang, L. Kim, C. S. Hong, "A deep learning accelerator for a typical binary neural network layer," in Korea Computer Congress 2021, Jeju: Korea, pp.597-599, June 2021. Retrieved from https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE10583012.
- B. R. Mahafza, Radar Systems Analysis and Design Using Matlab, 2nd ed. New York, NY: CRC Press, 2005.
- Y. -J. Kong, S. -K. Woo, S. Park, S. -Y. Shin, Y. H. Jang, E. Yang, "OS CFAR computation time reduction technique to apply radar system in real time," The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 29, No. 10, pp. 791-798, Oct. 2018. DOI: https://doi.org/10.5515/KJKIEES.2018.29.10.791.
- M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland: Oregon, pp. 226-231, Aug. 1996. Retrieved from https://dl.acm.org/doi/10.5555/3001460.3001507.
- M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, "Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or -1," arXiv, Feb. 2016. DOI: https://doi.org/10.48550/arXiv.1602.02830.
- Raspberry Pi. raspberry-pi-4-model-b [Internet]. Available: https://www.raspberrypi.com/products/raspberry-pi-4-model-b/.
- Analog Devices. EVAL-DEMORAD [Internet]. Available: https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/eval-demorad.html#eb-overview.
- Terasic Technologies. DE10-Lite Board [Internet]. Availabl e: https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=234&No=1021.