DOI QR코드

DOI QR Code

Use of Drainage Water as Irrigation Resource in the Paddy Field to Mitigate Non-point Source Pollutants

배수로 물 관개 벼농사의 비점오염원 경감효과

  • Kim, Choon-Song (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Ko, Jee-Yeon (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Lee, Jae-Saeng (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Jung, Ki-Yeol (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Park, Sung-Tae (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Ku, Yeon-Chung (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Kang, Hang-Won (Rural Development Administration)
  • 김춘송 (농촌진흥청 작물과학원 영남농업연구소) ;
  • 고지연 (농촌진흥청 작물과학원 영남농업연구소) ;
  • 이재생 (농촌진흥청 작물과학원 영남농업연구소) ;
  • 정기열 (농촌진흥청 작물과학원 영남농업연구소) ;
  • 박성태 (농촌진흥청 작물과학원 영남농업연구소) ;
  • 구연충 (농촌진흥청 작물과학원 영남농업연구소) ;
  • 강항원 (농촌진흥청)
  • Published : 2007.06.30

Abstract

Objective of this study was to assess the efficient rice cultivation practice to mitigate the non-point source pollutants loading to the adjacent watershed. Cultivation practices consisted of machine transplanting, direct seeding on dry paddy, and no tillage in which no fertilizer and pesticide were applied to paddy field. Water in drainage canal was used as irrigation source during the entire rice growing season. Loading of the non-point source pollutants to the adjacent small stream was mitigated by all treatments. Rice yield, total biomass (rice + weeds), and uptake T-N, $P_2O_5$, and $K_2O$ were higher in machine transplanting practice than those in direct seeding and no tillage practices. However, the purification effects of non-point source pollutants were followed in orders of no tillage > direct seeding > machine transplanting due to quantity of irrigation water. The annual purification quantity of T-N, T-P, and K by rice cultivations ranged from 46 to 369 kg $ha^{-1}$, 4.1 to 16.4 kg $ha^{-1}$, and 55 to 238 kg $ha^{-1}$, respectively, during the entire rice growing season. Results revealed that no tillage practice of rice cultivation was the best management option in reducing the loading of the non-point source pollutants from the drainage canal into stream.

본 연구는 농경지와 농촌마을로부터 발생하여 소하천으로 유입되는 비점오염물질을 경감시키기 위하여 농업간선배수로 끝의 논에서 배수로 물을 관개수로 이용하였을 때 수질정화효과를 살펴보고, 비점오염물질 정화를 위한 효과적인 벼 재배 양식을 탐색하기 위하여 수행하였다. 모든 벼 재배양식에서 하천으로 유입되는 비점오염물질이 정화되는 효과를 확인할 수 있었다. 잡초의 건물량을 포함한 벼 재배양식별 총건물생산능력은 기계이앙재배에서 가장 높았으나, 무경운자연재배와는 차이가 적었고, 비점오염물질인 T-N과 $P_2O_5$, $K_2O$의 흡수량은 기계이앙재배 > 무경운자연재배 > 건답직파재배 순으로 높았다. 벼 전 생육기간동안 비점오염물질의 정화량은 T-N과 T-P, K 모두 무경운자연재배 > 건답직파재배 > 기계이앙재배 순이었는데, 기계이앙에 비하여 무경운자연재배에서 T-N 323, T-P 12, K 183 kg $ha^{-1}$가 더 정화되었으며, 건답직파재배에서는 T-N 68, T-P 0.7, K 16 kg $ha^{-1}$가 더 정화된 결과를 보였다. 기계이앙재배는 건물생산량과 비점오염물질의 흡수량은 가장 많았으나 관개 소요량이 적고 시비에 의하여 비점오염물질의 정화효과는 상대적으로 낮았다. 벼 생육단계별 비점오염물질정화량은 기계이앙재배의 경우 분얼기 > 결실기 > 신장기 순으로 높았으나, 무경운자연재배와 건답직파재배에서는 결실기 > 분얼기 > 신장기 순이었다. 벼 재배양식별 쌀수량은 기계이앙재배의 4,698 kg $ha^{-1}$와 비교하여 무경운자연재배는 13%, 건답직파재배는 15% 감수되었다.

Keywords

References

  1. Korea Rural Community & Agriculture Corporation (2002) Environment friendly agricultural infrastructures scheme to reduce nutrient (N, P) loading of agricultural drainage water. KRC Research Report
  2. Kim, J. H., Lee, J. S., Ryu, J. S., Lee, K D., Jung, G. B., Kim, W. I., Lee, J. T. and Kwun, S. K. (2005) Characteristics of non-point pollutants discharge in a small agricultural watershed during farming season. Kor. J. Environ. Agri. 24(2), 77-82 https://doi.org/10.5338/KJEA.2005.24.2.077
  3. Choi, C. H., Han, K. W., Cho, J. Y., Chun, J. C. and Kim, S. J. (2000) Pollutant loading and changes of water quality at the Namdae-cheon watershed in Keum river districts. Kor. J. Environ. Agri. 19(1), 26-31
  4. Chung, J. B., Kim, B. J. and Kim, J. K. (1997) Water pollution in some agricultural areas along Nakdong river. Kor. J. Environ. Agri. 16(2), 187-192
  5. Chung, J. B., Kim, M. K., Kim, B. J. and Park, W. C. (1999) Nitrogen, phosphorus, and organic carbon discharges in the Imgo small agricultural watershed. Kor. J. Environ. Agri. 18(1), 70-76
  6. Jung, Y. S., Yang, J. E., Joo, Y. K., Lee, J. Y., Park, Y. S., Choi, M. H. and Choi, S. C. (1997) Water quality of streams and agricultural wells related to different agricultural practices in small catchments of the Han River basin. Kor. J. Environ. Agri. 16(2), 199-205
  7. Jung, Y. S., Yang, J. E., Park, C. S., Kwon, Y. G. and Joo, Y. K. (1998) Changes of stream water quality and loads of N and P from the agricultural watershed of the Yulmunchon tributary of the Buk-Han river basin. J. Korean Soc. Soil Sci. Fert. 31(2), 170-176
  8. Osami, K., Hirayma, K. and Kunimatsu, T. (1996) A study on pollutant loads from the forest and rice paddy fields. Water Science and Technology 33(4-5), 159-165
  9. Yulianti, J. S., Lence, B. J., Johnson, G. V. and Takyi, A. K. (1999) Non-point source water quality management under input information uncertainty. J. Environmental Management 55(3), 199-217 https://doi.org/10.1006/jema.1998.0257
  10. Kim, J. G., Lee, K. B., Park, C. W., Lee, D. B. and Kim, S. J. (2005) Effects of sewage irrigation on rice growth condition in paddy soil. Kor. J. Environ. Agri. 24(2), 180-184 https://doi.org/10.5338/KJEA.2005.24.2.180
  11. Yoon C. G., Kwun, S. K., Chung, I. M. and Kwon, T. Y. (1999) The effect of reclaimed sewage irrigation on the rice cultivation. Kor. J. Environ. Agri. 18(3), 236-244
  12. Kang, U. G., Lee, J. S., Ko, J. Y., Park, C. Y. and Jung, K. Y. (2004) Agroenvironmental characteristics and N. P demand of paddy fields irrigated with the water of Nagdong river. Kor. J. Environ. Agri. 23(3), 170-177 https://doi.org/10.5338/KJEA.2004.23.3.170
  13. Braskerud, B. C. (2002) Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution. Ecol. Eng. 18, 351-370 https://doi.org/10.1016/S0925-8574(01)00099-4
  14. Kaneki, R. (2003) Reduction of effluent nitrogen and phosphorus from paddy fields. Paddy Water Environ. 1, 133-138 https://doi.org/10.1007/s10333-003-0020-5
  15. Takeda, I., Fukushima, A. and Tanakab, R. (1997) Non-point pollutant reduction in a paddy-field watershed using a circular irrigation system. Water Res. 31(11), 2685-2692 https://doi.org/10.1016/S0043-1354(97)00117-6
  16. Takeda, I. and Fukushima, A. (2004) Phosphorus purification in a paddy field watershed using a circular irrigation system and the role of iron compounds. Water Res. 38, 4065-4074 https://doi.org/10.1016/j.watres.2004.08.003
  17. Takeda, I. and Fukushima A. (2006) Long-term changes in pollutant load outflows and purification function in a paddy field watershed using a circular irrigation system. Water Res. 40(3), 569-578 https://doi.org/10.1016/j.watres.2005.08.034
  18. Yeongnam Agricultural Research Institute (2004) Research plan 2004. YARI, Milyang, Korea. p. 783-787
  19. Korea Environmental Protection Agency (2000) Standard methods for the examination of water contamination. KEPA
  20. 안재환 (2000) 비도시 지역에서 강우사상에 따른 비점오염원 유출특성 연구. 건설기술정보. 205, 18-23
  21. Son, C. H. (2004) A study on characteristics of nonpoint source pollutants in a rural watersheds. M.S. Thesis, Chungju National University, Chungju
  22. National Institute of Agricultural Science & Technology (1988) Soil and plant chemical analysis method. Rural Development Administration, Suwon, Korea
  23. Rural Development Administration (2003) Survey standard of agriculture experiment. Suwon, Korea
  24. Huang, J., Reneau, R. B. and Hagedorn, C. (2000) Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Water Res. 34, 2582-2588 https://doi.org/10.1016/S0043-1354(00)00018-X
  25. Kaneki, R. (1991) Water quality of return flow and the purification by using paddy fields. J. Jpn. Soc. Irrig. Drain. Reclam. Eng. 59, 1275-1280

Cited by

  1. Assessment of Efficiency for Constructed Wetlands to Reduced Non-point Source Pollution vol.14, pp.1, 2014, https://doi.org/10.9798/KOSHAM.2014.14.1.333