DOI QR코드

DOI QR Code

Overall risk analysis of shield TBM tunnelling using Bayesian Networks (BN) and Analytic Hierarchy Process (AHP)

베이지안 네트워크와 AHP (Analytic Hierarchy Process)를 활용한 쉴드 TBM 터널 리스크 분석

  • Park, Jeongjun (Korea Railroad Research Institute, Advanced Infrastructure Research Team) ;
  • Chung, Heeyoung (Korea University, School of Civil, Environmental and Architectural Engineering) ;
  • Moon, Joon-Bai (DONGAH Geological Engineering Co., Ltd) ;
  • Choi, Hangseok (Korea University, School of Civil, Environmental and Architectural Engineering) ;
  • Lee, In-Mo (Korea University, School of Civil, Environmental and Architectural Engineering)
  • 박정준 (한국철도기술연구원 첨단인프라연구팀) ;
  • 정희영 (고려대학교 건축사회환경공학부) ;
  • 문준배 ((주)동아지질 터널사업부) ;
  • 최항석 (고려대학교 건축사회환경공학부) ;
  • 이인모 (고려대학교 건축사회환경공학부)
  • Received : 2016.08.30
  • Accepted : 2016.09.21
  • Published : 2016.09.30

Abstract

Overall risks that can occur in a shield TBM tunnelling are studied in this paper. Both the potential risk events that may occur during tunnel construction and their causes are identified, and the causal relationship between causes and events is obtained in a systematic way. Risk impact analysis is performed for the potential risk events and ways to mitigate the risks are summarized. Literature surveys as well as interviews with experts were made for this purpose. The potential risk events are classified into eight categories: cuttability reduction, collapse of a tunnel face, ground surface settlement and upheaval, spurts of slurry on the ground, incapability of mucking and excavation, and water leakage. The causes of these risks are categorized into three areas: geological, design and construction management factors. Bayesian Networks (BN) were established to systematically assess a causal relationship between causes and events. The risk impact analysis was performed to evaluate a risk response level by adopting an Analytic Hierarchy Process (AHP) with the consideration of the downtime and cost of measures. Based on the result of the risk impact analysis, the risk events are divided into four risk response levels and these levels are verified by comparing with the actual occurrences of risk events. Measures to mitigate the potential risk events during the design and/or construction stages are also proposed. Result of this research will be of the help to the designers and contractors of TBM tunnelling projects in identifying the potential risks and for preparing a systematic risk management through the evaluation of the risk response level and the migration methods in the design and construction stage.

본 논문에서는 쉴드 TBM 시공 시 발생 가능한 사건 및 원인의 규명, 리스크 발생의 인과관계 규명, 리스크의 위험도 판별, 리스크의 저감대책 제시를 통한 쉴드 TBM의 전반적인 시공 리스크 관리에 대한 연구를 수행하였다. 이를 위해서 쉴드 TBM의 사고 사례에 대한 문헌조사, 설계 및 시공 전문가 인터뷰를 수행하였다. 리스크 사건은 절삭량 저하, 막장면 붕괴, 지반 침하, 지반 융기, 이수 분출, 배토 불능, 굴착 불가, 지하수 누수의 8개의 그룹으로 나뉘어졌다. 리스크의 원인은 지질 원인, 설계 원인, 시공관리 원인의 3가지 그룹으로 나뉘어졌다. 리스크 원인과 사건간의 인과관계를 체계적으로 분석하기 위하여 베이지안 네트워크를 이용한 도식적인 관계도를 작성하였다. 리스크의 위험도를 산정하기 위하여 리스크가 발생하였을 때 이를 복구하기 위한 다운타임 및 비용을 기준으로 전문가를 대상으로 Analytic Hierarchy Process (AHP)를 수행하였으며, 위험도 결과에 기반하여 리스크 대응단계를 제시하고 이를 실제 리스크 발생사례와 비교하여 검증하였다. 또한 발생 가능한 리스크에 대응하기 위하여 설계 및 시공단계에서의 리스크 저감대책을 제안하였다. 제안된 연구는 TBM 설계자 및 시공자가 현장의 조건을 고려하여 리스크 원인을 선정하고 이로 인해 발생 가능한 리스크를 체계적으로 분석하여 파악할 수 있게 해주며, 리스크의 위험도의 판별 및 그에 대한 설계 및 시공단계에서의 저감대책을 통해 체계적인 쉴드 TBM 리스크 관리에 도움을 줄 수 있다.

Keywords

References

  1. Cho, G., Cho, Y., Gang, H. (2003), "The analytic hierarchy process", Donghyun Publisher, Gyeonggi, Korea.
  2. Chong, W. (2013), "Tunnel Boring Machine (TBM) performance in Singapore's Mass Rapid Transit (MRT) system", Master Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.
  3. Hyun, K.C., Min, S., Choi, H., Park, J., Lee, I.M. (2015), "Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels", Tunnelling and Underground Space Technology, Vol. 49, pp. 121-129. https://doi.org/10.1016/j.tust.2015.04.007
  4. Jensen, F.V. (2001), "Bayesian networks and decision graphs", Springer-Verlag, New York.
  5. Koh, S.Y., Kwon, S.J., Choo, S.Y., Kim, Y.M. (2010), "The study of the disputed issues during the soft ground shield TBM design and construction according to shield TBM trouble case study", 2010 Fall Conference of the Korean Society for Railway, Jeju, Korea, pp. 2362-2371.
  6. Kwak, J.H., Park, H.K. (2009), "A case study of delay analysis for E.P.B shield TBM method in construction site", Journal of the Korean Society of Civil Engineers, Vol. 29, No. 6D, pp. 737-743.
  7. Maidl, B., Herrenknecht, M., Anheuser, L. (1996), "Mechanised shield tunneling", Ernst & Sohn, Berlin, Germany.
  8. Park, J. (2015), "A risk management system applicable to shield TBM tunnel using Bayesian network", Ph.D. Dissertation, Korea University, Seoul, Korea.
  9. Tóth, Á., Gong, Q., Zhao, J. (2013), "Case studies of TBM tunneling performance in rock-soil interface mixed ground", Tunnelling and Underground Space Technology, Vol. 38, pp. 140-150. https://doi.org/10.1016/j.tust.2013.06.001
  10. Saaty, T.L. (1980), "The analytic hierarchy process", McGraw-Hill, New York.
  11. Seo, J.W., Yoon, J.H., Kim, J.H., Jee, S.H. (2010), "Development of risk analysis structure for large-scale underground construction in urban areas", Journal of the Korean Geotechnical Society, Vol. 26, No. 3, pp. 59-68.
  12. Shirlaw, J.N., Hencher, S.R., Zhao, J. (2000), "Design and construction issues for excavation and tunnelling in some tropically weathered rocks and soils", Proceedings of GeoEng2000, Melbourne, Australia, Vol. 1, pp. 1286-1329.

Cited by

  1. Bayesian Networks-based Shield TBM Risk Management System: Methodology Development and Application pp.1976-3808, 2019, https://doi.org/10.1007/s12205-018-0912-y
  2. Grid-Based Flood Risk Mapping Considering Indices of Regional Characteristics vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.513