본 논문에서는 알려지지 않은 잡음 환경에서 강인한 음성 인식 성능을 위하여 missing-feature복구 기법을 다루며, 베이시안 분류기를 기반으로 하는 마스크 예측 기법의 성능을 향상시킬 수 있는 방법을 제안한다. 기존의 마스크 예측 기법에서는 배경 잡음 종류에 독립적인 성능을 위해 전 주파수 대역을 분할하여 발생시킨 유색 잡음을 마스크 예측기의 훈련에 이용하였으나, 제한된 양의 훈련 데이터베이스 조건에서는 성능의 한계가 불가피하다. 보다 다양한 잡음 스펙트럼을 반영하면서 마스크 예측의 성능을 향상시키기 위해, 서로 다른 주파수 대역에 독립적인 구조를 가지는 베이시안 분류기를 제안하며, 훈련에 사용하는 유색 잡음의 생성 방식을 이에 맞게 수정한다. 각각의 주파수 대역을 분할하여 유색 잡음을 생성함으로써 다양한 잡음 환경을 반영하는 동시에 훈련 데이터베이스 부족 문제를 줄일 수 있다. 제안하는 마스크 예측 기법을 클러스터 기반의 missing-feature 복구 기법과 결합하여 음성 인식기에 적용함으로써 성능을 평가한다. 실험 결과는 제안한 기법이 백색 잡음, 자동차잡음, 배경 음악환경에서 기존의 방법에 비해 향상된 성능을 가짐을 입증한다.
This paper describes a robust speech recognition technique by reconstructing spectral components mismatched with a training environment. Although the cluster-based reconstruction method can compensate the unreliable components from reliable components in the same spectral vector by assuming an independent, identically distributed Gaussian-mixture process of training spectral vectors, the presented method exploits the temporal dependency of speech to reconstruct the components by introducing a hidden-Markov-model prior which incorporates an internal state transition plausible for an observed spectral vector sequence. The experimental results indicate that the described method can provide temporally consistent reconstruction and further improve recognition performance on average compared to the conventional method.
3D reconstruction of a human face from an image sequence remains an important problem in computer vision. We propose a method, based on a factorization algorithm, that reconstructs a 3D face model from short image sequences exhibiting rotational motion. Factorization algorithms can recover structure and motion simultaneously from one image sequence, but they usually require that all feature points be well tracked. Under rotational motion, however, feature tracking often fails due to occlusion and frame out of features. Additionally, the paucity of images may make feature tracking more difficult or decrease reconstruction accuracy. The proposed 3D reconstruction approach can handle short image sequences exhibiting rotational motion wherein feature points are likely to be missing. We implement the proposal as a reconstruction method; it employs image sequence division and a feature tracking method that uses Active Appearance Models to avoid the failure of feature tracking. Experiments conducted on an image sequence of a human face demonstrate the effectiveness of the proposed method.
다수의 2차원 객체 영상으로부터 3차원 형상을 복원하는 방법은 컴퓨터 비젼 분야에서 널리 연구되고 있다. 복원된 3차원 형상의 정확도 개선을 위해서는 잡음 영향을 줄이거나 영상 프레임 수를 확보하는 것이 무엇보다 중요하다. 그렇지만 특징점 추정 시 잡음은 잠재적으로 내포되고, 관측행렬을 구성하는 영상 프레임 수는 특징점 추적 실패, 장애요소 또는 낮은 해상력 등에 의해 일반적으로 감소하게 된다. 그래서 잠음 환경 하에 손실된 특징점을 보다 정확히 보정하여 사용 가능한 영상 프레임 수를 확보하는 것이 필수적이다. 따라서 우리는 잡음 분포 하에서 기하학적 특성을 이용해 손실 특징점의 오차 거리와 방향을 직접 제어할 수 있는 분석적 접근방법을 제안한다. 제안한 방법의 우수성은 합성과 실제 객체에 대한 실험 결과를 통해서 검증한다.
This paper addresses the factorization method to estimate the projective structure of a scene from feature (points) correspondences over images with occlusions. We propose both a column and a row space approaches to estimate the depth parameter using the subspace constraints. The projective depth parameters are estimated by maximizing projection onto the subspace based either on the Joint Projection matrix (JPM) or on the the Joint Structure matrix (JSM). We perform the maximization over significant observation and employ Tardif's Camera Basis Constraints (CBC) method for the matrix factorization, thus the missing data problem can be overcome. The depth estimation and the matrix factorization alternate until convergence is reached. Result of Experiments on both real and synthetic image sequences has confirmed the effectiveness of our proposed method.
본 논문은 정사투영 카메라로부터 얻어진 2차원 영상으로부터 복원된 3차원 형상과의 기하학적 관계를 분석한다 본 연구의 목적은 2차원과 3차원 관계를 기하학적으로 분석함으로서 잡음에 강인한 3차원 형상 복원에 기여하기 위함이다. 만약 3차원 형상 복원 시 특징점이 손실되지 않고 잡음이 존재하지 않는다면 3차원 형상복원은 고유치 행렬인수분해로 정확하게 얻을 수 있다. 그렇지만 실제 촬영된 피사체의 일부가 보이지 않는 오클루션 또는 낮은 해상도 등의 영향으로 인해, 피사체의 특징점 일부가 손실된 경우는 고유치 행렬인수분해의 계산적 문제가 발생되어 정확한 3차원 복원을 할 수 없게 된다. 더욱이 추출된 특징 점에 잡음이 포함될 경우는 복원된 3차원 형상 역시 그 섭동 영향을 받게 된다. 본 연구는 이러한 잡음환경에서도 손실된 특징 점을 정확히 유추하기 위해 2차원과 3차원 사이의 기하학적 특성을 분석하는데 포커스 한다.
Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series contaminated by noises resulted from mechanical problems or sensing environmental condition. There is also a high likelihood that during the data acquisition periods the target site corresponding to any given pixel may be covered by fog or cloud, thereby resulting in bad or missing observation. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. A feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. The experimental results of this simulation study show the potentiality of the proposed system to reconstruct the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather. This study provides fundamental information on the elements of the proposed system for right usage in application.
지상 관측으로부터 수집된 시계열 원격탐사 자료는 관측환경의 악화와 감지 시스템의 기계적 고장과 같은 관측 장애요인에 의해 많은 미관측 및 악성 자료를 가지게 된다. 육상의 지표면 parameters는 기후와 주로 연관되어 있으므로 육상 관측 위성 영상에 나타나는 많은 물리적 과정은 계절 주기에 따른 시간적 변화를 보인다. 본 연구에서 제안된 적응 feedback 시스템은 계절에 따라 변하는 물리적 과정을 포함하는 시계열 원격 탐사 영상 시리즈를 재구축한다. 이 시스템에서는 계절적 변화를 추적하기 위하여 하모닉 모형을 사용하고 수치 영상 모형의 공간적 의존성을 나타내기 위해 Gibbs Random Field를 사용한다. 재구축 과정을 통하여 구성된 적응 하모닉 모형을 사용하여 지표면 연속적 변화를 감시할 수 있다. 본 연구에서는 1996년부터 2000년까지 한반도로부터 관측된 AVHRR 영상 시리즈를 일 주일 간격으로 정적 합성하여 NDVI 시리즈를 구하고 하모닉 모형을 사용하는 적응 재구축 시스템을 이 NDVI 시리즈에 적용하여 한반도 식생 변화를 추적하였다. 연구 결과는 하모닉 적응 재구축 시스템이 실시간 지표면 변화 감시를 하는데 매우 효과적인 수단이 될 것이라는 잠재성을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.