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ABSTRACT

This paper addresses the factorization method to estimate
the projective structure of a scene from feature (points) cor-
respondences over images with occlusions. We propose
both a column and a row space approaches to estimate the
depth parameter using the subspace constraints. The projec-
tive depth parameters are estimated by maximizing projec-
tion onto the subspace based either on the Joint Projection
matrix (JPM) or on the the Joint Structure matrix (JSM). We
perform the maximization over significant observation and
employ Tardif’s Camera Basis Constraints (CBC) method
for the matrix factorization, thus the missing data problem
can be overcome. The depth estimation and the matrix fac-
torization alternate until convergence is reached. Result of
Experiments on both real and synthetic image sequences has
confirmed the effectiveness of our proposed method.

Keywords: factorization, subspace method, projective re-
construction, missing data

1. INTRODUCTION

The factorization approach is an attractive method for re-
covering the structure from motion which has many inter-
esting applications. The projective factorization initially
proposed by Sturm and Triggs [1-3] enables us to estimate
the joint projection matrix (JPM) and the joint structure ma-
trix (JSM) simultaneously, in which framework the mea-
surement matrix containing consistent set of the projective
depth estimated by means of the fundamental matrix and the
epipoles is factored to obtain projective structure. Among
various method [4] subsequently elaborated by many others
the subspace based method [5—7] is an extension of [1-3] to
utilize whole set of the image observation for estimating the
depth parameters. The most of existing projective factor-
ization methods employ the singular value decomposition
(SVD) for the matrix factorization, and hence they inherit
simplicity and numerical stability from it.

Despite its attractive features, however, there exists very
important issue that should be solved for practical use, i.e.
missing data problem. If some measurements are missing
the SVD method can never be applied directly, therefore the
missing data problem has been remaining one of the most
persistent difficulty since the factorization approach was ini-
tially proposed. Furthermore, this problem of course creates
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difficulties for the depth estimation because, especially in
the subspace approach, the depth parameter is estimated by
maximizing projection of the observation onto subspace.

In this paper we propose a subspace based approach
to reconstruct the JPM and the JPM in the face of uncal-
ibrated images with occlusions. Our proposed method al-
ternates the depth estimation and the subspace computation
until convergence is reached. For the former we propose
two methods: a column space approach based on the JPM
and a row space approach based on the JSM. We show how
the subspace constrains are imposed on incomplete data to
estimate the projective depth. In our formulation the max-
imization to enforce the constraints is performed over the
significant observation, hence the missing data problem can
be overcome. For the latter, the subspace computation, we
reformulate Camera Basis Constrains proposed by Tardif et
al. [8], where they are imposed for gluing partial reconstruc-
tions, and the JPM is estimated from the design matrix con-
structed by integrating the constraints. We present a per-
formance evaluation among both of the proposed methods
and the bundle adjustment [4], and the results show that our
method yields practical quality. We also compare both of
the column space approach and row space approach, and
the result shows that the latter is more robust to the choice
of image coordinate system.

The rest of this paper proceeds as follows. After a brief
review of the Sturm/Triggs factorization in Section 2, Sec-
tion 3 presents the formulation of depth estimation as a max-
imization of projection onto subspace. Section 4 shows how
this subspace can be estimated by means of CBC translated
from partial reconstructions. Experimental results and brief
discussion are presented in Section 5, followed by conclu-
sion in Section 6.

2. BACKGROUND

Consider a scene consisted of n 3D points X; = [X; Y; Z; 17,
j = 1,...,n observed m uncalibrated cameras with 3 x 4
projection matrix P;, i = 1,...,m. Under the perspective
projection X; are mapped to images x;; = [u;; v;; 117 , and
the relation is written by matrix equation

AnXn ... X, P,

W= =

PX, (1)

: : X X
/lmlxml vee /lmnxmn Pm



where 4;; is non-zero scale factor and called projective depth.

In the following we refer the matrix P and X as the JPM and
the JSM respectively. Since the right hand side of the above
equation has at most rank 4 once we estimate a consistent
set of the depth 4;; the rescaled measurement matrix W is
factorized into a product of 3m x4 JPM and 4 x n JSM. One
practical factorization method for rank deficient matrix is
the SVD because it is not only numerically stable but also,
in the presence of noise, can estimate best low rank approx-
imation so that following algebraic error is minimized:

2

i

W = PXI% = 3" 3" |4y — P
J

In general, there is no prior knowledge about the depth,
thus projective factorization is consisted two main tasks: the
depth estimation and the subspace computation.

3. SUBSPACE METHOD

This section describes the proposed column and row space
approach for estimating the depth parameter using the sub-
space constraint, which are derived from the fact that the
column and the row vector of the measurement matrix scaled
by the projective depth must lie in four dimensional sub-
space spanned by the column vector of the JPM and the row
vector of the JSM respectively. The derivation of the depth
estimation method is roughly as follows. It starts from the
assumption that JPM and JSM is approximately estimated.
Then the error function is rearranged so that it depends on
the projective depth and either the JPM or the JSM. Finally
the depth parameters can be obtained from the solution of
minimization of the rearranged error function. Our formu-
lation is equivalent to [7] in the complete data case where
the SVD is employed for the subspace computation.

3.1 Column space approach

We want to estimate a consistent set of the depth parame-
ters for minimizing algebraic error (2). To begin with, we
express the j-th column vector of the scaled measurement
matrix as

PX; =Uju;, =1,... 3)
where Uj = diag [x,'j], Hj = [/l]j, /12]‘, ...,/lmj]T. The
above equation denotes the fact called the subspace con-
straint the vector U ;u; must lie in the column space of the
JPM. The minimization of the algebraic error (2) is equiva-
lent to the minimization of the error between both sides of

3):

.n)

G

m}inn}linzj: |[Un; - PX | )

If we know P the least squares solution X; for the above
minimization problem is given by
-1
X;=(P'P) P'Uu; (5)

To enforcing the subspace constraint, instead of minimizing
the algebraic error (4), by using this X; we try to minimize
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the residue of the projection of U;u; onto P. Substituting
(5) into (4) we have

o
J

subject to ||U_,~ﬂ_,-|| =1,

2

s

(6)

where the additional constraint is imposed to avoid trivial
solution so that all u; equal to zero. Since the objective
function of (6) is projection of U;u; onto the subspace or-
thogonal to the column space of P, minimizing it is equiva-
lent to maximizing the projection onto the column space of
P, we have

max
Hij

)

Slirenr o]

subject to ”Ujl.lj” =1.

)

The main reason to adopt the formulation (7) is that, by
means of SVD, it can be solved very efficiently (See [7]).

For the case of missing data, we consider the reduced
objective function which contains significant observations
only. Consider the situation in which the point X; is ob-
served some subset (say m; < m) of the cameras. Denot-
ing the 3m; X 4 JPM consisting of the subset P ; and corre-
sponding observation U j» maximization for reduced objec-
tive function is expressed as

()

subject to Hﬁ,ﬁ,“ = \/g

where f1; is the depth for the available observation. Notice
that the constraint imposed on the scale of the depth param-
eters is replaced so that the number of views where the point
is visible is reflected to the weighting for the observations.

3.2 Row space approach

In contrast to the column space approach described in the
preceding section the row space approach proposed in this
section operates in the subspace spanned by JSM. The min-
imization of the algebraic error which is correspond to (4)
can be expressed, by introducing the matrix

Vo = diag|u;], G=1,....n), 9)
Vo = diag|vy|, (=1.....n), (10)
Vi) = Lnxns (11)
as follows:
(12)

min min Z‘ Zk: Vs = Pao X]

where v; = [Ai1, Ai2, ..., 4in]" and Py, k = 1,2,3 are the
depth parameter and the k-th row of P; respectively. By

-1
means of X7 (XXT) , the pseudo inverse of X, we can



eliminate P; from the above equation in the same manner
as (0) :

S5 ) s
i k

subject to Z ”V(k’,')V,‘” =1.
k

)

Since (13) cannot deal with missing data directly we de-
rive depth estimation formula based on the subspace con-
straint for overcoming it in a similar way as the preceding
section. For constructing reduced objective function we as-
sume 7, (< n) points are visible in the i-th image and define
the 4 x n; partial JSM fi and its observation Vk,i. Substi-
tuting them to (13) we may have reduced objective function
about significant depth v; desired here, however, there also
exists maximization problem equivalent to it. Consequently,
after some algebraic manipulation, the depth v; is estimated
as follows:

%)
i %

2

(X7 (XXT) " %) V¥

i

subject to Z HV(,(,,-)V,'“ = \/g
k

Roughly speaking, the depth estimation formula (13) is
regarded as dual to (6), and hence, ideally at least, both of
them should have almost same behavior except for the com-
putational cost depending on the size of the design matrix.
Nevertheless it should be pointed out that the estimation us-
ing (6) depends on the choice of the coordinate systems in
the images while (13) is independent from it (proof is found
in [6]). We will experimentally show the coordinate depen-
dency of the column space approach (6) (see below).

(14)

4. FACTORIZATION

The subspace constraints derived in the above section en-
able us, by using bilinear approach, to estimate the con-
sistent depth parameters from either of JPM or JSM. The
bilinear approach alternates the depth estimation and sub-
space (i.e. JPM or JSM) computation until convergence is
reached, therefore we need to compute it from the incom-
plete observations for dealing with image sequence with oc-
clusion. To do this we impose the CBC (camera basis con-
straints) proposed by Tardif et al. [8], and solve it by using
the generalized eigen approach proposed by the authors [9].

The subspace computation using the CBC method runs
as follows. A sufficient set of the basis constrains translated
from the partial reconstructions from the complete sub-blocks
of the measurement matrix is integrated to a single design
matrix. Then JPM is estimated to solve the generalized
eigen problem of the design matrix. If we adopt the row
space approach JSM is linearly estimated by means of in-
tersection.
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4.1 CBC method

Suppose [ complete sub-blocks without missing data are se-
lected for computing partial reconstructions. The k-th sub-
block Wy is factorized, by using the SVD, to give k-th partial
reconstruction:

Wi = A B, (15)

where Ay and By, are candidate of a partial JPM and a partial
JSM respectively. By introducing II; for amputating the
projection matrix whose index is not within the sub-block
W, the partial reconstruction A; can be related to the JPM:

AyZy =TIk P, (16)

where Z; is a projective transformation for mapping Ay to
the global coordinate system. The whole set of the equation
(16) called camera basis constrains imposes constraints on
the globally consistent P and Z;, which are estimated by
solving

l

]
min ) P~ AZilf; = )
=1 k=1

2

. (17
F

]

This method estimates P and Z; simultaneously [8], how-
ever, the size of the design matrix grows proportionally to
the number of the constraints. Furthermore the estimation of
the aligning matrix Z; is meaningless because, for the sub-
space computation, we only need the JPM. Thus we elim-
inate Z; to reduce the number of the unknowns and the
size of the design matrix by means of pseudo inverse of
Ay. Notice that since Ay is a part of an orthogonal ma-
trix, the pseudo inverse of it is equal to AZ. Substituting
Z, = A,{HkP the minimization problem (17) is written by

min ZI: ”(1 -~ AA]) HkPHi . subject to Zl: TPl = 1,
k=1 k=1

(18)
where constraint is added for avoiding meaningless solution
(say P equal to zero). Again we can obtain the equivalent
maximization problem:

max 2 H(AkA,{) HkP”i ,  subject to ZI: TPy = 1.
k=1 k=1

19)
The JPM P is obtained by solving the generalized eigen
problem of following matrices:

Ak,lAZ’] Ak,1A£2 Ak,lA]zm
l .
A AT ALAT
M = Z k.2 k1 k,2 k2 , (20)
k=1 : : :
Ak,mAIT;] Ak,mA]Ziz Ak»’"AIZ-,m
!
i = 3 I, 1)
k=1
where the matrix Ay, (i = 1,...,m) is the projection matrix

corresponding to the i-th image if the k-th sub-block con-
tains it; otherwise Ax; = 03x4. Notice that M is the m X m
normal matrix of the design matrix in (19), hence the size of
it is independent from the number of the basis constraints.
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Fig. 1: Simulation : (a) Ground-truth Camera Layout. The cam-
eras are represented by pyramids with apex at the Ground-truth
camera location. (b) A reconstruction result of the column space
approach followed by self calibration [10] (oo = 1.0). (c, d) The
close-up of the figure (a) and (b) respectively. (¢) The RMS repro-
jection error plotted against different noise levels. The abbrevia-
tions in the graph C/CBC, R/CBC, and BA stand for the column
space approach, the row space approach, and nonlinear bundle ad-
justment.

3

5. EXPERIMENT

We evaluate the performance on projective reconstruction in
RMS geometric reprojection error. Denoting the k-th row of
the i-th projection matrix Py ;(k = 1,2, 3), it is measured as

follows:
2
+([v;; -
) (J PiyX;

Erryp = ﬁ ZZ: ZJ: [(”ij
(22)

where, in the presence of missing data, the summation and
the averaging are performed over the significant observa-
tions and their number respectively.

_ PupX;
PipX;

PoyX;

5.1 experiment with synthetic data

In order to evaluate the performance of the proposed method,
we performed several simulations using synthetic data. For
the experiment we use a Desktop PC with intel Core2Duo
E6550 2.33GHz and 1GB memory. The scene consisted of
512 feature points distributed on a object, and the camera
moved around the object and captured 36 frames (see figure
1). The known entries of measurement matrix was about
31%. The synthetic image coordinates were corrupted by
Gaussian noise with mean zero.

)|
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Table 1: Wadham College:

C/CBC R/CBC BA
Erryp [pixel] 2.24E-01 2.26E-01 2.23E-01
CPU time [sec] 18.15 7.59 -

As compared with C/CBC, the method R/CBC required less com-
putational time while it giving almost equivalent result.

(d)

Fig. 2: Wadham College : (a) and (b) two images from the Wad-
ham College sequence [13]. (c) and (d) two view of Euclidean
reconstruction with texture mapping, where the projective recon-
struction is upgraded by self calibration. The cameras are repre-
sented by pyramids with apex at the estimated camera location.

We carried out 50 trials for each o. Figure 1 indicates re-
construction result respect to noise levels. The reprojection
error varies roughly linearly with noise, and the row space
approach (R/CBC) yields similar results as nonlinear bun-
dle adjustment [4] (BA) while the column space approach
(C/CBC) is less accurate than R/CBC.

The major reason for the less accuracy of C/CBC is
that we ceased the iteration when the geometric error (22)
is increased even if algebraic error decreased. The most
likely cause for this behavior is that, at each iteration, the
enforcement of the subspace constraint does not guarantee
improvement in the sense of reduction of the geometric er-
ror. The constraint imposed on the depth parameters in (8)
assures to avoid the extremely meaningless solution u; = 0,
however, it is still possible to select the solution in which
one element of y; (say Ai;) is zero if it decreases the over-
all algebraic error by setting P, = 0 and A; = 0,(j
1,...,n). Although, in realistic noise level, even C/CBC
yields practical quality for several application (e.g. visual
modeling), appropriate regularization [11, 12] is needed to
avoid such meaningless solutions. One advantage of the for-
mulation (8) to these more “theoretical” approaches may be
the computational simplicity due to the cost that is indepen-
dent from the length of image sequence.

5.2 experiment with real data

In this experiment we use the Wadham College sequence
(courtesy of the Univ. Oxford Visual Geometry Group [13])
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Fig. 3: Error descent curve for the Wadham College sequence:
All methods were started with same initial solution A;; = 1.0.
As compared with the other method, the method C/CBC-U re-
quired large number of iteration. In contrast to the row space ap-
proach (R/CBC-U, R/CBC-G), the number of iteration of the col-
umn space approach (C/CBC-U, C/CBC-G) required to conver-
gence varied considerably according to the standardization. No-
tice that the error is plotted not against the computational time but
the iteration count. The method R/CBC-G is faster than method
C/CBC-G due to the difference between the computational cost
per iteration.

for evaluating effectiveness the proposed method. The im-
age sequence consisted of 5 images, with 1331 3D points
and 3019 feature points and the percentage of missing data
is about 55%. Our proposed method was successfully ap-
plied to experiment with the above data. The result of the
experiment shown in Figure 2 and Table 1. The method

C/CBC takes 47 iterations to converge in 18.15 s while R/CBC

takes 68 iterations to converge is 7.59 s.
5.3 choice of the image coordinate system

As mentioned in the above section, the subspace spanned by
JPM depends on the choice of the coordinate systems on the
image. In this section we, therefore, present an experiment
that examines the effect of it on the the behavior of the depth
estimation methods. To do this we compared two choice:
method [1, 7] scales image coordinate uniformly while the
other [4, 14] shifts the origin to the centroid of the feature
points before the scaling. We refer the choice of the image
coordinate as standardization [1], and express the method
[1,7] and the method [4, 14] by adding suffixes “-U” and
“-G” respectively, for example, the abbreviation “C/CBC-
G” stands for the column space approach working on the
coordinate system selected by the latter method.

The result of the experiment shown in Figure 3 was that
we observed significant dependence of the convergence rate
of the column space approach on the standardization while,
as expected, the row space approach is almost independent
from it. To summarize, the author strongly recommend to
apply the standardization method [4, 14], especially when
the column space approach is adopted for depth estimation.

6. CONCLUSION

In this paper, we have proposed a subspace based iterative
projective factorization method that can deal with image se-
quences with occlusion. The experimental results on both
real and synthetic data have confirmed that our proposed
method yields practical quality for 3D reconstruction.
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