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ABSTRACT

3D reconstruction of a human face from an image sequence
remains an important problem in computer vision. We pro-
pose a method, based on a factorization algorithm, that re-
constructs a 3D face model from short image sequences
exhibiting rotational motion. Factorization algorithms can
recover structure and motion simultaneously from one im-
age sequence, but they usually require that all feature points
be well tracked. Under rotational motion, however, feature
tracking often fails due to occlusion and frame out of fea-
tures. Additionally, the paucity of images may make fea-
ture tracking more difficult or decrease reconstruction accu-
racy. The proposed 3D reconstruction approach can handle
short image sequences exhibiting rotational motion wherein
feature points are likely to be missing. We implement the
proposal as a reconstruction method; it employs image se-
quence division and a feature tracking method that uses Ac-
tive Appearance Models to avoid the failure of feature track-
ing. Experiments conducted on an image sequence of a
human face demonstrate the effectiveness of the proposed
method.
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1. INTRODUCTION

Recovering the 3D shape of an object and the camera mo-
tion from an image stream is one of the important research
topics in computer vision. One popular solution is to em-
ploy factorization by Tomasi and Kanade[1] which can re-
cover structure and motion simultaneously from one image
sequence. This algorithm is robust and efficient to use under
the assumption that all features are well-tracked. Feature
tracking, however, remains a fundamental problem, and no
best solution has been found. A major cause of this problem
is missing features.

The approaches used to deal with missing data can be
categorized as two types. The first type estimates or inter-
polates the feature tracking data[2]. Estimation and inter-
polation of the feature trajectory, however, is only possible
over a few frames. Tracking fails when the adjacent frames
are very different or the camera moves rapidly. In addition,
it is impossible to recover the complete 3D shape of the ob-
ject using data captured by one or more cameras set on a
circle centered on the object.

The second approach, on the other hand, deals with miss-
ing data by constructing a 3D shape from some short im-
age sequences extracted from a long input image sequence.
Some researchers recover structure and motion by applying
sequential factorization[3][4] which overcomes the problem
by regarding features as a vector time series; others try to di-
vide a long input image sequence into some subsequences
and then integrate the results from the shorter sequences[5].
The main problem with this technique is that reconstruction
accuracy of the recovered structure tends to be low because
the camera motion becomes very small due to the division.
For the structure and motion problem, in general, high ac-
curacy is achieved when the camera motion is enough large.

We propose a 3D face reconstruction method that can
handle an image stream exhibiting rotational motion but
likely to be missing some data. In order to overcome the dif-
ficulties mentioned above, we introduce a feature tracking
method based on Active Appearance Models(AAM) to deal
with the missing features, and a reconstruction method that
recovers camera motion from the whole input sequence first
by factorization, and then reconstructs the 3D shape from
several short sequences to prevent a drop in reconstruction
accuracy. All derived 3D shapes are finally integrated into
one final shape.

We begin with a brief review of AAM[6] and Factoriza-
tion [8] in Section 2. In Section3 we describe the proposed
method. In Section 4, experimental conditions and recon-
struction results are presented, followed by the conclusion
in Section 5.

2. BACKGROUND

This section presents two short overviews of AAM by Cootes,
Edwards and Taylor and the paraperspective factorization
method by Poelman and Kanade. More detailed descrip-
tions of these methods can be found in [6][7][8].

2.1 Active Appearance Models

AAM[6][7] is a fitting algorithm commonly used to han-
dle deformable objects in single images. This algorithm is
based on the statistical models generated by combining a
model of shape variation with a model of texture variation.

The statistical models are built by using a set of labeled
training images. Corresponding points have been marked on
each training image. Let shape vectorx be a column vector
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containing point locations in the image, andx be the mean
shape calculated as an average of the shape vectors in the
training set. After each training image is warped by mean
shape to match the points to those of mean shape, we obtain
texture vectorg, which has the components of texture in the
warped shape and the average of texture vectorsg as a mean
texture. Using Principal Component Analysis (PCA), shape
vectorx and texture vectorg in the training image can be
approximated as:

x = x + Qsc (1)

g = g + Qgc (2)

whereQs, Qg are matrices describing the mode of variation
derived from the training set, andc are the appearance pa-
rameters that control shape and texture.

Fitting the model to a new image, called AAM search,
involves finding the optimal appearance parametersc and
the pose parametert which contains the in-plane rotation,
translation, and scale in the new image, by minimizing the
residual error between the geometrically normalized input
image and the current model texture.

2.2 Factorization

WhenP features are being tracked inF image frames, let
(ufp, vfp) be the projection point observed in theith frame.
The 2F £ P measurement matrix,W, is then defined as
follows:

W =
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whereuf , vf is the average of feature points in framef . The
measurement matrix,W, is thus composed of the elements
based on the coordinate system whose origin is the centroid
of the feature points.

úfp = ufp ¡ uf , v́fp = vfp ¡ vf (4)

Let us now considersp as the 3D feature in world coordi-
nates; each image,f , was taken at some camera orientation,
which we describe by the orthogonal unit vectorif , jf and
kf whereif andjf correspond to thex andy axes of the im-
age plane, respectively, withkf points along the camera’s
line of sight. Under paraperspective projection, a feature
point on framef can be expressed as follows:

ufp = mT
f sp + xf , vfp = nT

f sp + yf (5)

where

zf = ¡tfkf , xf =
¡iftf

zf
, yf =

¡jftf

zf
(6)

mf =
if ¡ xfkf

zf
, nf =

jf ¡ yfkf

zf
(7)

wherezf is the depth to the object’s center of mass, and
(xf , yf ) is the center of mass projected onto framef . Note
that these equations are simplified by assuming unit focal
length.

Without loss of generality, we can place the world origin
at the center of mass of the object. Because of this,uf , vf

equalxf , yf , respectively.

uf =
1
P

P∑
p=0

(mT
f sp + xf ) = xf (8)

vf =
1
P

P∑
p=0

(nT
f sp + yf ) = yf (9)

Thus the elements ofW ,úfp, v́fp, can be written as:

úfp = ufp ¡ xf = mT
p sp (10)

v́fp = vfp ¡ yf = nT
p sp (11)

These equations show thatW can be decomposed into mo-
tion matrix M (which represents the camera motion) and
shape matrixS (which represents the 3D shape):

W =
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]
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In order to ensure that this decomposition of (12) is unique,
it is required to find appropriate linear transformation3£ 3
matrix A that transformsM̂ and Ŝ into the true solutions
M andS as follows:

M = M̂A, S = A−1Ŝ (13)

An appropriateA can be determined by using the following
equations suggested by the constraints of paraperspective
projection.

‖mf‖2

1 + x2
f

=
‖nf‖2

1 + y2
f

(14)
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xfyf

2

(
‖mf‖2
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f

+
‖nf‖2

1 + y2
f

)
(15)

3. OVERVIEW OF THE PROPOSED METHOD

The proposed 3D reconstruction approach can handle an
image sequence containing rotational motion in which fea-
ture tracking is likely to fail. Fig. 1 overviews the pro-
posed method. First, the input image sequence is divided
into some subsequences to overcome the dropping of fea-
ture points. In each short subsequence and the whole input
sequence, the feature points that are visible in all views are
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Input an Image sequence

Divide the input sequence 

into N subsequences

Feature tracking for every 

sequence by AAM

AAM DB 

for the subsequence#1

AAM DB

for the subsequence#N

AAM DB 

for the input sequence

Recover the camera motion 

from the input sequence 

by factorization

Reconstruct 3D shapes 

from subsequences

Merge all 3D shapes

Fig. 1: Overview of the proposed method

tracked by using AAM. A set of tracked features from the
whole sequence is then input to the factorization algorithm
to recover camera motion. Using the recovered camera mo-
tion, local 3D shapes are reconstructed from the short sub-
sequences. By utilizing the relationship between the local
coordinates of short parts and that between the overlapping
features of adjacent subsequences, we can reconstruct one
large 3D face model by merging the 3D face parts obtained
from the subsequences.

3.1 Sequence Division

The original input sequence is divided intoN subsequences,
see Fig 2. This enables us to deal with many more features
in the subsequences than is possible in the whole sequence.

3.2 Feature Tracking

AAM is well-suited for fitting deformable objects like hu-
man faces. Its fitting performance strongly depends on the
training set used to build the model. AAM can fit any direc-
tions of face if the training set has a variety of directions of
face images. In the proposed method, N+1 AAMs for every
sequence are created in consideration of this characteristic.

As a feature tracker, AAM is applied to all frames in
each image sequence. We can then obtain the appearance
parametersc of every single image. Using the equations
mentioned in Section 2.1, shape vectorx can be derived
from c.

AAM fitting has another advantage over other feature
trackers, it doesn’t require any time series information. Thus

whole sequence

subsequence #1

subsequence #2

subsequence #N

time series

Fig. 2: Division of the input image sequence

an AAM base feature tracker can extract features even if ad-
jacent frames have quite different appearances.

3.3 Camera Motion and Shape Recovery

The camera motion recovered by applying the factorization
algorithm to the entire sequence is used in the shape recov-
ery of subsequences. Of course we can obtain both the cam-
era motion and the shape simultaneously from the factoriza-
tion results of short subsequences, but those derived from
subsequences tend to be less accurate than that from the en-
tire sequence. There is thus a need to replace the camera
motion when recovering the shape from subsequences.

When the camera motion is known, the shape matrix can
be obtained from (12) as:

S = M+W (16)

whereM+ is the pseudo-inverse matrix ofM. Using this
equation and the recovered camera motion, the 3D shapes
of the subsequences can be obtained.

3.4 Merging All Shapes

N+1 shapes reconstructed from (16) have different local co-
ordinates. In order to acquire one final shape by merging
the partial shapes, we employ Horn’s method, which uses
unit quaternion, to find the conversion matrices that unify
the different local coordinates into one common coordinate
[10]. After conversion of all 3D shapes in each local co-
ordinate, the final 3D face shape is created by smoothing
overlapping points. The number of vertices in the merged
final shape may not be enough to express a human face be-
cause the AAMs used in feature tracking have sparse feature
points as shape vectors. To make the 3D face dense, a sub-
division mesh[11] is applied after merging the 3D shapes.
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4. EXPERIMENTAL RESULTS

In order to confirm the proposed method’s ability to recon-
struct a 3D shape from an image stream exhibiting rotational
motion, we challenged it with a real image sequence.

In this experiment, 13 images of a human face from dif-
ferent orientations in the HOIP Database[9] were used as
the input image sequence. Fig.3 shows some of the input
images. These face images represent 5 degree increments
in horizontal rotation with no vertical movement. The in-
put sequence was divided into 2 subsequences where the
number of frames in both subsequences was set to 7 with 1
image overlap. That is, the first subsequence consisted of
frame#1 to frame#7, and the second subsequence con-
sisted of frame#7 to frame#13.

frame #1 frame #4 frame #7 frame #10 frame #13

time series

Fig. 3: Input image sequence

AAMs for each subsequence were built using 210 face
images taken from 7 directions as a training set. Fig. 4
shows examples of the AAM training images; the shape
vectors were created by aligning the white points in the pic-
ture. Fig. 4 (a) is one of the training samples for the entire
sequence; (b) and (c) are for subsequence#1 and subse-
quence#2, respectively. Each AAM consisted of 69 fea-
tures. The AAM for the entire sequence is narrower than
that for the subsequences, but this is enough to recover cam-
era motion.

Fig. 4: AAM training samples

Fig.5 compares the factorization result of the camera
motions from the sequences whereθ andφ are the azimuth
angle and the polar angle, respectively. It is readily under-
stand from Fig.5 that the subsequences, especiallyθ, yield
less accurate results. Note that a consideration of the coor-
dinates defined in factorization sets the vertical axis as the
y-axis.

Fig. 6 shows the merging result and the results after
making the subdivision mesh. Three views of the 3D face
with texture mapping on the subdivided shape are shown in
Fig. 7.

frame number

frame number

[d
eg

re
e]

[d
eg

re
e]

Fig. 5: Recovered Camera Motions

5. CONCLUSIONS AND FUTURE WORKS

An method of 3D face reconstruction from an image se-
quence exhibiting rotational motion has been presented. This
method reconstructs a 3D face by dividing the input image
sequence into several short subsequences and merging all
3D points derived from the subsequences. This allows a
human face to be reconstructed from the image sequence in
which feature tracking is likely to fail and to use short image
sequences, especially when the images were captured under
large camera motion. To further investigate the possibilities
of the proposed approach, we will conduct a quantitative
evaluation.
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Fig. 7: Resulting 3D Face

(a) Merged 3D Face Shape (b) Subdivided 3D Face Shape

(c) Merged 3D Face Shape  

             (top view)

(d) Subdivided 3D Face  Shape

                 (top view)

Fig. 6: Reconstruction Results of 3D Shape
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