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Adaptive Reconstruction of Harmonic Time Series Using
Point-Jacobian Iteration MAP Estimation and Dynamic
Compositing: Simulation Study
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Abstract : Irregular temporal sampling is a common feature of geophysical and biclogical time series in
remote sensing. This study proposes an on-line system for reconstructing observation image series
contamninated by noises resulted from mechanical problems or sensing environmental condition. There is
also a high likelihood that during the data acquisition periods the target site corresponding to any given pixel
may be covered by fog or cloud, thereby resulting in bad or missing observation.

The surface parameters associated with the land are usually dependent on the climate, and many physical
processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal
periodicity. A feedback systemn proposed in this study reconstructs a sequence of images remotely sensed
from the land surface having the physical processes with seasonal periodicity. The harmonic model is used
to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatiel
dependency of digital image processes. The experimental results of this simulation study show the
potentiality of the proposed system to reconstruct the image series observed by imperfect sensing
technology from the environment which are frequently influenced by bad weather. This study provides
fundamental information on the elements of the proposed system for right usage in application.

Key Words : Harmonic Model, Adaptive Reconstruction, Dynamic Compositing, GRF, Bayesian MAP
Estimation, Point-Jacobian Iteration.

1. Introduction

Information on the temporal variability of land
surface parameters such as temperature, albedo and
percentage vegetation cover are of vital importance
for regional and global environmental studies. The
evolution of technology is radically affecting the
quantity and quality of data collected through remote
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sensing. It is now possible to continuously acquire
images at regular time intervals. Satellite remote
sensing is one of the best tools available to obtain
accurate timely information on the earth’s surface.
The development of multitemporal techniques in
remote sensing has been primarily motivated by the
difficulty in discriminating between surface material
types based on the spectral signatures at a single point
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in time. A typical approach for the analysis of
temporal patterns in remote sensing data involves the
visual examination of temporal sequence of
individual pixels using “temporal profile” plotting
(Tucker, et al., 1990; Teng, 1990). Multitemporal
features have also been exploited through knowledge-
based approaches (Goldberg et al., 1983; Carlotto,
1985). Change-detection of remote sensing has
played a fundamental role in monitoring the land
surface (Singh, 1989; Fung, 1990; Townsend and
Justice, 1995; Carlotto, 1997). The importance of
change-detection techniques relies on the possibility
of identifying changes on the land by analyzing
multitemporal images acquired at different time.
Recently, statistical pattern recognition techniques
have increasingly interested in using multitemporal
information for classification of remotely-sensed
imagery (Kahzenie et al., 1990; Jeon and Landgrebe,
1999; Melgani and Serpico, 2003). However, the
statistical approaches to the analysis of remotely-
sensed images sampled at relatively short intervals
remain largely unexplored, and few are designed to
preserve abundant and useful information of the
sequence of high temporal resolution, which is
critical for the parameterization of surface processes.
In the multitemporal analysis of remotely-sensed
imagery, thete is a high likelihood that during the data
acquisition periods the target site corresponding to
any given pixel may be covered by fog or cloud,
thereby resulting in bad or missing observation. The
original distribution of radiated intensity in remote
sensing is modified by residual effects resulting from
imperfect sensing of the target and atmospheric
attenuation. The observations of pixels are then
spatially correlated. Lee and Crawford (1991)
addressed these problems in the adaptive
reconstruction technique to analyze the sequential
imagesA observed at regular time intervals. The

original uncontaminated intensity is supposed to
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exhibit temporal variation about the mean intensity
only dependent on the target characteristics and be
corrupted by a spatial operator and spatially-
autocorrelated noise. The original intensity series is
reconstructed by “automatic unsupervised learning”
using the adaptive linear prediction filter and
maximum a posterior (MAP) restoration filter.
Dynamic compositing approach was suggested to
recover bad and missing observations by (Lee, 2002).
This reconstruction method incorporates temporal
variation in physical properties of targets and
anisotropic spatial optical properties into image
processing. The adaptive system performs the
dynamic compositing by obtaining a composite
image as a weighted sum of the observed value and
the value predicted according to local temporal trend.

The surface parameters associated with the land are
usually dependent on the climate of local region, and
many physical processes that are displayed in the
image sensed from the land then exhibit temporal
variation with seasonal periodicity. Of great
importance is the need to incorporate temporal
variation of the spectral component according to
physical properties of targets and climate changes
into image processing techniques. For example,
reflectance data from the Advanced Very High
Resolution Radiometer (AVHRRY) that was deployed
on the NOAA-n series of polar orbiting meteorological
satellites were obtainable globally on a daily basis
and had been shown to have considerable potential
for large scale land vegetation studies (Horvath et al.,
1982; Townsend and Tucker, 1984). Multispectral
reflectance data have been transformed and combined
into various vegetation indices to minimize the
variability due to external factors (Tarpley et al.,
1984). The most commonly used vegetation index is
the normalized difference vegetation index (NDVI),
and the NDVI versus time profile then reflects the

seasonal development history of individual
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vegetation. The seasonality of physical processes can
be represented with a harmonic model which is
characterized by four components: level, frequency,
amplitude and phase. The parameterization of the
harmonic components for an individual pixel
provides physically interpretable values to
characterize the seasonal variation of local region
corresponding to the pixel.

In this study, a feedback system is proposed to
reconstruct a sequence of images remotely sensed
from the land surface having the physical processes
with seasonal periodicity. The harmonic model is used
to track seasonal variation through time, and a Gibbs
random field (GRF) is used to represent the spatial
dependency of digital image processes. Because
simultaneous modeling of temporal and spatial
components is extremely complex, the feedback
system includes the separate filters of each
component, which are independently operated. It is
natural to suppose that the harmonic parameters
change over time. The temporal component filter
employs an exponentially weighted method as in the
dynamic compositing (Lee, 2002) to adapt to changes
over time. For a realization of spectral intensities, the
harmonic parameters are sequentially updated over
time using an exponentially weighted least squares
criterion. The spatial component filter employs the
Point-Jacobian iteration MAP estimation based on the
GRF (Lee, 2007) to remove the spatially-correlated
noise from the observation and estimate the mean
intensity, which is associated with target class
parameter, using contextual information. In the
reconstruction system, missing observation is replaced
by the prediction from the harmonic model and bad
observation is recovered by the dynamic compositing
of quadratic polynomial function. The proposed
system was extensively evaluated with simulation data
generated by Monte Carlo method. Sections 2 and 3

describe the adaptive harmonic parameter estimation
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and Point-Jacobian iteration MAP filters, which are
the components of the reconstruction system. Section
4 outlines the proposed reconstruction system
including the dynamic compositing filter of quadratic
polynomial function. Section 5 contains the
experimental results using simulation data.

Conclusions are presented in Section 6.

2. Adaptive Harmonic Parameter
Estimation Filter

The process of seasonality in local region can be
represented with a harmonic model whoes
components are assumed to be only due to the local
characteristics. The level represents the average of
spectral intensity over the whole period that the data
are compiled. The periodicity of response is described
by the frequency. The amplitude reflects the range and
the phase the initiation time of variation in the spectral
measurements. Thus, the temporal realization of
spectral measurements of each pixel can be expressed
as a harmonic model according to the seasonal
characteristics of the corresponding local region.

A sample image is considered as a set of n pixels
and the intensity process can be represented at time ¢

in the form
Yt=Xt+£t

Y
X, =y + 6= {0y + i sin(wit + 6y, i €1}

where I, = {1,2,---,n} is a set of pixel indices, ¥; and
X, are the observed and original intensity vectors
respectively, & is the spatially-correlated random
noise vector, J is the mean intensity vector associated
with local texture, &, is the deviation vector from the
mean intensity. Texture involves the spatial
distribution of intensity in a local region. It contains
important information about the structural

arrangement of surfaces and their relationship to their
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neighboring surfaces. In this study, the original
intensity is assumed to be spatially distributed with a
same mean as its neighbor pixels according to the
structure of local texture.

The parameters of the harmonic model are derived
from the temporal trajectory of each pixel’s intensity.
The sinusoid form of Eq. (1) for each pixel
individually can be restated without the pixel index as

xe= N +ysin{wt+0) =1+ a coswt + B sinwt (2)
where
y=Jo+ B
o
tanf = —,
B
and for a sequence of (m + 1) time steps, {z = 1,
tla" "tm}a
Xn=H,V 3)
where

Xm = [xtov xtp" " xtm]T
1 coswry sinwry
1 coswt; sinwt
H = : ' !
m . . .
1 coswt,, sinwt,
V=[n,a, Bl

If the frequency is known, the least-squares estimate
of the unknown harmonic parameter vector V is
calculated for a given realization series at a pixel site
from the following objective function:

m‘;n{ Xn-HVY(X,,-H,V)}. C))
By taking the first derivative of Eq. (4) as 0, the least-
squares estimate is obtained:

) m X4 cOSWt
V=Ml H,) H]X,, = | Z,coswr Z,coszq)t
sinwt X, coswr sinwt

2 sinwt XX
Y coswt sinwt | | T, x, coswt], )
X sinot 2 % sinet

The harmonic parameters can be adaptively
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estimated by using the exponentially weighted least
squares criterion. Given a weight 0 < A; < 1, the
estimates of the harmonic parameters are sequentially
updated over time for a realization {x;, l t=ty,
t1,-.t;} at the ith pixel:
Mg | (L@ Ca S [ (@xdt0
Vie= |y, |=|ct o S| |06
Bi) |Sw S S |@s®

©

where
L) = A WL ) + 1
Clt) = A% 1)C(tk_l) +cos Wty
S(to) = A% "VS(t. 1) + sin wry
CS(t) = A% "DCS(h 1) + cos wt sin wry
C2t) = At 1) + cos? oty
S2(1) = A WU 1) + sin? wiy
(/)x,i(tk) = llgtk ) tH)(ﬂx,i(tk_l) +Xxz,
it =M% "V, (1) +x,,c08 ot
050 = 2% 00, (15.1) + x5 o

and the initial values of all the elements at time #.; are
zero. The weight 4 is an exponential forgetting
factor that introduces a decaying dependence on past
observations, thereby allowing the coefficients to
track the temporal varying characteristics of the mean

intensity process.

3. Point-Jacobian Iteration Map Filter

Image processes are assumed to combine the
random fields associated with intensity and texture
respectively. The objective measure for determining
the optimal restoration of this “double compound
stochastic” image process is based on Bayes’
theorem. Given an observed image ¥, the Bayesian
method is to find the MAP estimate from the mode of
the posterior probability distribution of the noise-free

vector X, or equivalently, to maximize the log-
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likelihood function

IPN=In P(Y|X) + In P(X). 0

It is natural that neighboring pixels with more
similar intensity levels have a higher probability of
having the same level. Based on this idea, spatial
interaction can be quantified for image texture
processes based on a distance measure between
neighboring pixels. If R; is the index set of neighbors
of the ith pixel, R = {R; | i€L,} is a “neighborhood
system” for ,,. A “clique” of {I,, R}, c, is a subset of
I, such that every pair of distinct indices in ¢
represents pixels which are mutual neighbors, and C,
denotes the set of all pair-cliques. A GREF relative to
the graph {f,,, R} on X ={x; | i€1,} can be defined by
specifying the energy function as a quadratic function
of X:

PO =" expl-E,(X))

— 2
0= % i)

®

where b;; is a nonnegative coefficient vector which
represents the “bonding strength” of the ith and the
Jjth pixels. This GRF is used to quantify the spatial
interaction probabilistically, that is, to provide a type
of prior information on the image texture.

The log-likelihood function of Eq. (7), which uses
the GRF of Eq. (8) and the additive Gaussian
intensity model, is convex, and the MAP estimate of
X is obtained by taking the first derivative of the log-
likelihood function:

X=Cl+ByiZly. ©)

where B = { 3;} where

-bjj for (i)EC,
Bij= (i,j)ZE cpbij fori=j
0 otherwise

The equation (9) can be solved by the point-
Jacobian iteration (Varga, 1962). Decomposing the

bonding strength matrix into a matrix with the

_83—

diagonal elements and a matrix with the non-diagonal

elements, the equation (9) is rewritten as
X=M;>Y-M;'BX
M= diagonal{cy % + Pu, kELL}.
Bs={p; | Bi=0)

The noise-free intensity is recovered iteratively: given

(10)

an initial estimate of x;, £ at the Ath iteration for the

ith pixel and a constant r

“h 2 Y poan| v
X' = O; Vi~ .. sxt Vel (1)
=) [ I e P Yk
where 3; =7; and B = -7;by; for i+j where
v)2
_(y,_y,)_z for GHeC,
bi=| X ity
@pEC,
0 otherwise
-
= ,ViEL,
of X b~y
GHEC,

The iteration converges to a unique solution since
¥(M;'B,)<1 where ¥(+) denotes the spectral radius
(Cullen, 1972). The constant r is a parameter related
to the distribution of Y and its appropriate choice is
unit value.

The variance o/ can be estimated using the
average value of observed intensities of the ith pixel
and its neighbors:

o i - ) + Zjer 0~ 14)*
" (agwor+ D

(12)

where
_ yitYery)

(nneighbor +1)

i
The initial estimates {£°} can be chosen as {£;} and
given a constant for k,<1, a threshold for the
condition of convergence in (11) can be defined as

Ah_ ~ A2
Yier | S 2ie, 0f
<k,
n

n

(13)
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where k.<1 is a given constant.

4. Reconstrunction System WTH
Dynamic Compositing

In the reconstruction system, missing observation
is replaced by the prediction from the harmonic
model and bad observation is recovered by the
dynamic compositing of quadratic polynomial
function. For a given observation sequence {y;; | 1=

fo,11,++ 4} for the ith pixel,

V=Y =y +0cos wt4f, sinr if y22° is missing

ifyf¥isbad. (14)
otherwise

V= Vi =Cogi+Cigt +0ot 2
Yei= y?fs

In Eq. (14), {0, 61,4362} are the adaptive quadratic
polynomial coefficients for the dynamic compositing,

which are calculated as

Coi | G0t Pt Go | | G010

Cuii =] Lt Goit) G| (Pt (15)
Gi | | P28 B3t Puitd| |Prile0)
where

O ite) = j'tbi¢h(tk—1) +1f
Onit) = Ay i Ontic)) + 1 Y25
@n and @y,; in Eq. (15) are sequentially updated over

tme:

Onil1) = AgDnlticr) + tf

Ot = ApPnticr) + 358 (16)

where @p(t-1) = @p, (1) = 0.

Note that Z i in Eq. (15) is the compositing weight at
time ¢ for the ith pixel, while and 4, in Eq. (16) is the
exponential forgetting weight. Under the assumption
that the prediction of the harmonic model is an good
estimate of the realization, the compositing weight is
calculated in this study as a value dependent on the
distanée between the observation and prediction:
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J Observation
__,l Quadratic Dynamic Compositing Filter

Harmonic Parameter
Estimates

Bad/Missing-
. Recovered Observation

’ Point-Jacobian Iteration MAP Filter

Realization of Original Intensity Process
in which spatially-correlated noise is removed

——-I Adaptive Harmonic Parameter Filter

of Mean Intensity Process
of harmonic model

l Point-Facobian Iteration MAP Filter

l Reconstructed series

Fig. 1. Outline of reconstruction system.

an

The proposed reconstruction system outlines in Fig. 1.

5. Experiments

This study assumes. that the frequency is known,
and all the simulation series were generated for 5
years at two-day time interval and with the frequency
of one year. First, the reconstruction system was
applied to a simulation harmonic signal which
changes its harmonic parameters over time. The
observation was simulated by superimposing additive
Gaussian noise to the original pattern. The adaptive
harmonic parameter estimation filter was evaluated
with the simulation signals having the noise of
standard deviation of 30. Fig. 2 shows the results
including the simulated noisy data. Table 1 contains
the values of mean square error which measures the

difference between the reconstructed signal and
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4 [ 1 2 3 4

Fig. 2. Reconstructed series with different exponential
forgetting weights for observation of noise standard
deviation 30: left - for only the 5th year, right - for 5
years (solid line for original pattern).

Table 1. MSE results using various exponential forgetting
weights for adaptive harmonic parameter filter

Noise Standard deviation A MSE
1.0 16.36

30 09 233

0.8 3.16

0.7 3.78

0.99 8.39

70 0.95 591

0.9 6.93

0.85 793

original pattern signal:

S AL — O
Mtimesteps

As shown in these results, the filter fails in tracking
the change without the exponentially weighted
criterion (that is, A5 = 1). The relatively small value of
the exponential forgetting weight also results in
locally deviating from the original pattern, but not
systematically. Fig. 3 shows the estimates of the
harmonic parameters over time. It indicates that the
small weight makes the estimates too sensitive to the
local change of observation. Next the filter was
applied to the noisy data with standard deviation of
70, and the results displays in Table 1 and Fig. 4.
Comparing to the previous results obtained from the

less noisy data, the experiment shows that it is

0 1 2 3 4

Fig. 3. Estimated harmonic parameters with A = 1.0 (dot), 0.9
(black solid) and 0.8 (gray solid) respectively: thick and
dark gray line for original pattem.
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Fig. 4. Reconstructed series with different exponential
forgetting weights for observation of noise standard
deviation 70: left - for only the 5th year, right - for 5
years (solid line for original pattern).

appropriate to use a larger weight for more noisy
data.

The reconstruction system including the dynamic
compositing filter was evaluated for the simulation
noisy data of standard deviation of 70 generated with
missing observation of 35%. Fig. 5 shows the
resultant reconstructed series when applying only the
dynamic compositing filter, only the adaptive
harmonic parameter estimation filter, and both the
filters respectively. As.shown in the figure, applying
the harmonic filter to the composited series resuits in
yielding more regularized series than to the
observation directly. Fig. 6 displays the compositing
weights computed over time. Since the exponential

forgetting weight, A, for the adaptive polynomial
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4

0 1 2 3

Reconstructed series with A = 0.97 and A, = 0.9 for
observation of noise standard deviation 70 and with
35% missing (solid line for original pattem).

Fig. 5.

coefficient estimation is related to the change of local

trend, it is better to use a relatively small weight.
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Compositing weights corresponding to Fig. 5.
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Fig. 7. Mean intensity processes of 5 classes of original pattem.

Last, the whole reconstruction system including
the Point-Jacobian MAP filter was applied to the
sequence of 912 simulation image generated from the
pattern of 5 classes. Each class has different original
harmonic patterns which change over time. The
missing rates of observation are displayed in Fig. 8.
Fig. 9 shows the resultant reconstructed images at 4
time steps of 90-day interval in the 5th year. In this

05

N fi 1
b il i

Fig. 8. Mlssmg rates of simulated observation.

—87-

Fig. 9. Reconstructed images at 4 time steps of 90-day
interval in the 5th year: mean intensity images of
original pattern (left), simulated observation images
(center) and reconstructed series images (right).

figure, the bright color in the observation image
means missing. The values of MSE computed over
the image at the individual time step ranges from 3.6
to 27.1.

30

: AN TN
c AN AN AL
YUARARTRATIA

Fig. 10. MSEs of reconstructed image series.
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6. Conclusions

This study suggests an adaptive reconstruction
system to analyze sequential digital images. The
system is effective in recovering the images sensed
from the land surface, which generally exhibits
temporal variation with seasonal periodicity, and
obtaining useful information on seasonal changes
from a sequence of contaminated observations. The
effectiveness of this reconstruction system is due to
combining the temporal and spatial components of
physical processes, which are displayed in the
observed scene, into image processing. Temporal
variation with seasonal periodicity is represented with
a harmonic model, and the GRF is used to represent
spatial correlation or dependency of neighboring
regions in the digital image structure.

The proposed system employs the adaptive scheme
using the exponentially weighted least square
criterion. The exponential forgetting weights are used
to introduce a decaying dependence on past
observations, thereby allowing the estimates to track
the temporal varying characteristics of the intensity
process. It is important to choose an appropriate value
between 0 and 1 for the weight to adapt to the
changes over time in a right way. The weight very
close to 1 may fail in tracking temporal variation at
the right time and a relatively small weight may
generate a reconstructed series swaying along data
fluctuation for a sequence of noisy observations. The
quadratic polynomial function is employed to
represent a local temporal trend for the dynamic
compositing, while the harmonic model represents
seasonal characteristics which can be considered as a
relatively long-term trend. The forgetting factor of the
polynomial model should be chosen as a value
smaller than that of the harmonic model, and the

weights of smaller values are more ideal for more

_88—

noisy data.

The experimental results of this simulation study
show the potentiality of the proposed system to
reconstruct the image series observed by imperfect
sensing technology from the environment which are
frequently influenced by bad weather. The simple
harmonic model with single frequency may not
represent the complicated temporal characteristics of
the physical processes that have been sensed and
displayed in the sequential imagery sufficiently. A
general harmonic model with multiple frequencies is
more appropriate for temporal processes. The
extension to the general model will be the subject of
future study.
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