• 제목/요약/키워드: mirror imaging

검색결과 119건 처리시간 0.023초

Mechanical Design for an Optical-telescope Assembly of a Satellite-laser-ranging System

  • Do-Won Kim;Sang-Yeong Park;Hyug-Gyo Rhee;Pilseong Kang
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.419-427
    • /
    • 2023
  • The structural design of an optical-telescope assembly (OTA) for satellite laser ranging (SLR) is conducted in two steps. First, the results of a parametric study of the major design variables (e.g. dimension and shape) of the OTA part are explained, and the detailed structural design of the OTA is derived, considering the design requirements. Among the structural-shape concepts of various OTAs, the Serrurier truss concept is selected in this study, and the collimation of the telescope according to the design variables is extensively discussed. After generating finite-element models for different structural shapes, self-gravity analyses are performed. To minimize the deflection and tilt of the mirror and frame for the OTA under the limited design requirements, a parametric study is conducted according to design variables such as the shapes of the upper and lower struts and the spider vane. The structural features found in the parametric study are described. Finally, the OTA structure is designed in detail to maintain the optical alignment by balancing the gravity deflections of the upper and lower trusses using the optimal combination of the parameters. Additionally, thermal analysis of the optical telescope design is evaluated.

Accuracy and reliability of 2-dimensional photography versus 3-dimensional soft tissue imaging

  • Ayaz, Irem;Shaheen, Eman;Aly, Medhat;Shujaat, Sohaib;Gallo, Giulia;Coucke, Wim;Politis, Constantinus;Jacobs, Reinhilde
    • Imaging Science in Dentistry
    • /
    • 제50권1호
    • /
    • pp.15-22
    • /
    • 2020
  • Purpose: This study was conducted to objectively and subjectively compare the accuracy and reliability of 2-dimensional(2D) photography and 3-dimensional(3D) soft tissue imaging. Materials and Methods: Facial images of 50 volunteers(25 males, 25 females) were captured with a Nikon D800 2D camera (Nikon Corporation, Tokyo, Japan), 3D stereophotogrammetry (SPG), and laser scanning (LS). All subjects were imaged in a relaxed, closed-mouth position with a normal smile. The 2D images were then exported to Mirror® Software (Canfield Scientific, Inc, NJ, USA) and the 3D images into Proplan CMF® software (version 2.1, Materialise HQ, Leuven, Belgium) for further evaluation. For an objective evaluation, 2 observers identified soft tissue landmarks and performed linear measurements on subjects' faces (direct measurements) and both linear and angular measurements on all images(indirect measurements). For a qualitative analysis, 10 dental observers and an expert in facial imaging (subjective gold standard) completed a questionnaire regarding facial characteristics. The reliability of the quantitative data was evaluated using intraclass correlation coefficients, whereas the Fleiss kappa was calculated for qualitative data. Results: Linear and angular measurements carried out on 2D and 3D images showed excellent inter-observer and intra-observer reliability. The 2D photographs displayed the highest combined total error for linear measurements. SPG performed better than LS, with borderline significance (P=0.052). The qualitative assessment showed no significant differences among the 2D and 3D imaging modalities. Conclusion: SPG was found to a reliable and accurate tool for the morphological evaluation of soft tissue in comparison to 2D imaging and laser scanning.

Application of 3D Simulation Surgery to Orbital Wall Fracture : A preliminary Case Study

  • Choi, Jong-Woo
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권1호
    • /
    • pp.16-18
    • /
    • 2014
  • The orbit has a very special anatomical structure. The complex anatomical structure should be restored when we encounter the patient with orbital wall fracture. Unless these specific anatomy were reconstructed well, the patient should suffer from various complications such enophthalmos, diplopia or orbital deformity. In addition, because the patient has a his own specific orbital shape, individualized approach will be necessary. The aim of this trial is to try to restore the original orbit anatomy as possible based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. In order to restore the missing skipped images between the cuts of CT data because of the thinness of the orbital walls, we manipulated the DICOM data for imaging the original orbital contour using the preoperatively manufactured mirror-image of the RP model. And we fabricated Titanium-Medpor to reconstruct three-dimensional orbital structure intraoperatively. This prefabricated Titanium-Medpor was then inserted onto the defected orbital wall and fixed. Three dimensional approach based on the computer simulation turned out to be very successful in this patient. Individualized approach for each patient could be an ideal way to manage the traumatic patients in near future.

Optical Design of CubeSat Reflecting Telescope

  • Jin, Ho;Pak, Soojong;Kim, Sanghyuk;Kim, Youngju
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.110.1-110.1
    • /
    • 2014
  • The optics of Space telescope is one of the major parts of space mission used for imaging observation of astronomical targets and the Earth. These kinds of space mission have a bulky and complex opto-mechanics with a long optical tube, but there are attempts have been made to observe a target with a small satellite in many ways. In this paper, we describe an optical design of a reflecting telescope for use in a CubeSat mission. For this design, we adopt the off-axis segmented method of astronomical observation techniques based on the Ritchey-Chr$\acute{e}$tien type telescope. The primary mirror shape is a rectangle with dimensions of $8cm{\times}8cm$, and a secondary mirror has dimensions of $2.4cm{\times}4.1cm$. The focal ratio is 3 which can obtain a $0.3{\times}0.2$ degree diagonal angle in a $1280{\times}800$ CMOS color image sensor with a pixel size of $3{\mu}m{\times}3{\mu}m$. This optical design can capture a ${\sim}4km{\times}{\sim}2.3km$ area of the earth's surface at 700 km altitude operation. Based on this conceptual design, we will keep trying to study more for astronomical observation with Attitude control system.

  • PDF

과학기술위성 1호 원자외선 분광기 FIMS의 배플 설계 (BAFFLE DESIGN OF FIMS)

  • 육인수;선광일;유광선;진호;박장현;남욱원;이대희;오승한;이진근;한원용;민경욱
    • 천문학논총
    • /
    • 제18권1호
    • /
    • pp.87-95
    • /
    • 2003
  • FIMS (Far-ultraviolet IMaging Spectrograph) is the main payload of STSAT-1 satellite which was successfully launched on September 27, 2003. The optical system of FIMS consists of two sets of parabolic cylinder mirror, slit, ellipsoidal reflection grating, and baffle system. We designed two types of baffle system for the FIMS: FOV baffle and order baffle. FOV baffle in the mirror house controls the field of view, and the order baffle in the vacuum box blocks the rays reflected rays by different orders.

PROTO-MODEL OF AN INFRARED WIDE-FIELD OFF-AXIS TELESCOPE

  • Kim, Sang-Hyuk;Pak, Soo-Jong;Chang, Seung-Hyuk;Kim, Geon-Hee;Yang, Sun-Choel;Kim, Myung-Sang;Lee, Sung-Ho;Lee, Han-Shin
    • 천문학회지
    • /
    • 제43권5호
    • /
    • pp.169-181
    • /
    • 2010
  • We develop a proto-model of an off-axis reflective telescope for infrared wide-field observations based on the design of Schwarzschild-Chang type telescope. With only two mirrors, this design achieves an entrance pupil diameter of 50 mm and an effective focal length of 100 mm. We can apply this design to a mid-infrared telescope with a field of view of $8^{\circ}{\times}8^{\circ}$. In spite of the substantial advantages of off-axis telescopes in the infrared compared to refractive or on-axis reflective telescopes, it is known to be difficult to align the mirrors in off-axis systems because of their asymmetric structures. Off-axis mirrors of our telescope are manufactured at the Korea Basic Science Institute (KBSI). We analyze the fabricated mirror surfaces by fitting polynomial functions to the measured data. We accomplish alignment of this two-mirror off-axis system using a ray tracing method. A simple imaging test is performed to compare a pinhole image with a simulated prediction.

Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing

  • Oh, Ji-hyeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.2.1-2.7
    • /
    • 2018
  • With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

Super Multi-View 3-D Display System using Vibrating Scanner Array(ViSA)

  • Jeon, Ho-In;Jung, Nak-Hee;Choi, Jin-San;Kang, Yo-Seek;Choi, Se-Ha;Shin, Sang-Hun;Son, Jung-Yung
    • Journal of the Optical Society of Korea
    • /
    • 제4권1호
    • /
    • pp.37-42
    • /
    • 2000
  • In this paper, we propose a super multi-view (SMV) 3-D display system using a vibrating scanner array (ViSA). The parallel beam scanning using a vibrating scanner array is performed by moving back and forth an array of curvature-compensated mirrors attached to two vibrating membranes. The parallel laser beam scanner array can replace the polygon mirror scanner which has been used in the SMV 3-D display system based on the focused light array(FLA) concept. The proposed system has great advantages in the sense that it requires neither huge imaging optics normechanical scanning parts. Some mathematical analyses and fundamental limitations of the proposed system are presented. The proposed vibrating scanner array, after some modifications and refinements, will replace polygon mirror-based scanners in the near future.

Design of an Optical System for a Space Target Detection Camera

  • Zhang, Liu;Zhang, Jiakun;Lei, Jingwen;Xu, Yutong;Lv, Xueying
    • Current Optics and Photonics
    • /
    • 제6권4호
    • /
    • pp.420-429
    • /
    • 2022
  • In this paper, the details and design process of an optical system for space target detection cameras are introduced. The whole system is divided into three structures. The first structure is a short-focus visible light system for rough detection in a large field of view. The field of view is 2°, the effective focal length is 1,125 mm, and the F-number is 3.83. The second structure is a telephoto visible light system for precise detection in a small field of view. The field of view is 1°, the effective focal length is 2,300 mm, and the F-number is 7.67. The third structure is an infrared light detection system. The field of view is 2°, the effective focal length is 390 mm, and the F-number is 1.3. The visible long-focus narrow field of view and visible short-focus wide field of view are switched through a turning mirror. Design results show that the modulation transfer functions of the three structures of the system are close to the diffraction limit. It can further be seen that the short-focus wide-field-of-view distortion is controlled within 0.1%, the long-focus narrow-field-of-view distortion within 0.5%, and the infrared subsystem distortion within 0.2%. The imaging effect is good and the purpose of the design is achieved.

Role of Arbitrary Intensity Profile Laser Beam in Trapping of RBC for Phase-imaging

  • Kumar, Ranjeet;Srivastava, Vishal;Mehta, Dalip Singh;Shakher, Chandra
    • Journal of the Optical Society of Korea
    • /
    • 제20권1호
    • /
    • pp.78-87
    • /
    • 2016
  • Red blood cells (RBCs) are customarily adhered to a bio-functionalised substrate to make them stationary in interferometric phase-imaging modalities. This can make them susceptible to receive alterations in innate morphology due to their own weight. Optical tweezers (OTs) often driven by Gaussian profile of a laser beam is an alternative modality to overcome contact-induced perturbation but at the same time a steeply focused laser beam might cause photo-damage. In order to address both the photo-damage and substrate adherence induced perturbations, we were motivated to stabilize the RBC in OTs by utilizing a laser beam of ‘arbitrary intensity profile’ generated by a source having cavity imperfections per se. Thus the immobilized RBC was investigated for phase-imaging with sinusoidal interferograms generated by a compact and robust Michelson interferometer which was designed from a cubic beam splitter having one surface coated with reflective material and another adjacent coplanar surface aligned against a mirror. Reflected interferograms from bilayers membrane of a trapped RBC were recorded and analyzed. Our phase-imaging set-up is limited to work in reflection configuration only because of the availability of an upright microscope. Due to RBC’s membrane being poorly reflective for visible wavelengths, quantitative information in the signal is weak and therefore, the quality of experimental results is limited in comparison to results obtained in transmission mode by various holographic techniques reported elsewhere.