DOI QR코드

DOI QR Code

Mechanical Design for an Optical-telescope Assembly of a Satellite-laser-ranging System

  • Do-Won Kim (Optical Imaging and Metrology Team, Advanced Instrumentation Institute, Korea Research Institute of Standards and Science) ;
  • Sang-Yeong Park (Hanwha Systems) ;
  • Hyug-Gyo Rhee (Optical Imaging and Metrology Team, Advanced Instrumentation Institute, Korea Research Institute of Standards and Science) ;
  • Pilseong Kang (Optical Imaging and Metrology Team, Advanced Instrumentation Institute, Korea Research Institute of Standards and Science)
  • Received : 2023.05.10
  • Accepted : 2023.06.06
  • Published : 2023.08.25

Abstract

The structural design of an optical-telescope assembly (OTA) for satellite laser ranging (SLR) is conducted in two steps. First, the results of a parametric study of the major design variables (e.g. dimension and shape) of the OTA part are explained, and the detailed structural design of the OTA is derived, considering the design requirements. Among the structural-shape concepts of various OTAs, the Serrurier truss concept is selected in this study, and the collimation of the telescope according to the design variables is extensively discussed. After generating finite-element models for different structural shapes, self-gravity analyses are performed. To minimize the deflection and tilt of the mirror and frame for the OTA under the limited design requirements, a parametric study is conducted according to design variables such as the shapes of the upper and lower struts and the spider vane. The structural features found in the parametric study are described. Finally, the OTA structure is designed in detail to maintain the optical alignment by balancing the gravity deflections of the upper and lower trusses using the optimal combination of the parameters. Additionally, thermal analysis of the optical telescope design is evaluated.

Keywords

Acknowledgement

This work was supported by the Defense Rapid Acquisition Technology Research Institute (DRATRI) - Grant funded by Defense Acquisition Program Administration (DAPA) (UC200012D).

References

  1. J. F. McGarry, E. D. Hoffman, J. J. Degnan, J. W. Cheek, C. B. Clarke, I. F. Diegel, H. L. Donovan, J. E. Horvath, M. Marzouk, A. R. Nelson, D. S. Patterson, R. L. Ricklefs, M. D. Shappirio, S. L. Wetzel, and T. W. Zagwodzki, "NASA's satellite laser ranging systems for the twenty-first century," J. Geod. 93, 2249-2262 (2019). https://doi.org/10.1007/s00190-018-1191-6
  2. M. Wilkinson, U. Schreiber, I. Prochazka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, "The next generation of satellite laser ranging systems," J. Geod. 93, 2227-2247 (2019). https://doi.org/10.1007/s00190-018-1196-1
  3. R. M. Tysdal, "Environmental test program of the Beacon Explorer spacecraft," Goddard Space Flight Center, NASA, USA, N65-15588 (1964).
  4. T. K. Varghese, W. M. Decker, H. A. Crooks, and G. Bianco, "Matera laser ranging observatory (MLRO): An overview," in Proc. Eighth International Workshop on Laser Ranging Instrumentation (NASA, Goddard space flight center, USA, Jun. 1, 1993).
  5. E. Samain, D.-H. Phung, N. Maurice, D. Albanesse, H. Mariey, M. Aimar, G. M. Lagarde, N. Vedrenne, M.-T. Velluet, G. Artaud, J-L. Issler, M. Toyoshima, M. Akioka, D. Kolev, Y. Munemasa, H. Takenaka, and N. Iwakiri, "First free space optical communication in Europe between SOTA and MeO optical ground station," in Proc. 2015 IEEE International Conference on Space Optical Systems and Applications (New Orleans, LA, USA, Oct. 26-28, 2015), pp. 1-7.
  6. D. Hampf, F. Sproll, P. Wagner, L. Humbert, T. Hasenohr, and W. Riede, "First successful satellite laser ranging with a fibre-based transmitter," Adv. Space Res. 58, 498-504 (2016). https://doi.org/10.1016/j.asr.2016.05.020
  7. C. G. Wynne, "Ritchey-Chretien telescopes and extended field systems," Astrophys. J. 152, 675 (1968).
  8. P. Y. Bely, The Design and Construction of Large Optical Telescopes (Springer NY, USA, 2003).
  9. J. Cheng, The Principles of Astronomical Telescope Design (Springer NY, USA, 2009).
  10. A. B. Meinel and M. P. Meinel, "Wind deflection compensated, zero-coma telescope truss geometries," Proc. SPIE 0628, 403-411 (1986).
  11. B. J. Haldeman, R. M. Haynes, V. Posner, J. R. Tufts, A. J. Pickles, and M. A. Dubberley, "Design and performance characterization of the lcogtn one-meter telescope optical tube assembly," Proc. SPIE 7739, 773915 (2010).
  12. G. J. Pentland, K. Gonzales, K. Harris, E. V. Ryan, and E. C. Downey, "The Magdalena ridge observatory 2.4 m telescope," Proc. SPIE 6267, 62670C (2006).
  13. K. B. Doyle and D. Vukobratovich, "Design of a modified Serrurier truss for an optical interferometer," Proc. SPIE 1690, 357-365 (1992).
  14. O. Karci and M. Ekinci, "Design of a high-precision, 0.5 m aperture Cassegrain collimator," Appl. Opt. 59, 8434-8442 (2020). https://doi.org/10.1364/AO.395673
  15. W. B. Davison, "Design strategies for very large telescopes," Proc. SPIE 1236, 878-883 (1990). https://doi.org/10.1117/12.19258
  16. W. B. Davison and J. R. P. Angel, "Large synoptic survey telescope mechanical structure and design," Proc. SPIE 4836, 104-110 (2002).
  17. C. Flebus, E. Gabriel, S. Lambotte, N. Ninane, M. Pierard, F. Rausin, and J. M. Schumacher, "Opto-mechanical design of the 3, 6 m optical telescope for ARIES," Proc. SPIE 7012, 70120A (2008).
  18. T. M. Valente, D. Vukobratovich, and R. W. Esplin, "Optimal support structures for chopping mirrors," Proc. SPIE 1690, 366-375 (1992).
  19. A. B. Meinel and M. P. Meinel, "Telescope structures: An evolutionary overview," Proc. SPIE 0748, 2-7 (1987).
  20. C. Cunningham and A. Russell, "Precision engineering for astronomy: Historical origins and the future revolution in ground-based astronomy," Philos. Trans. Royal Soc. A 370, 3852-3886 (2012). https://doi.org/10.1098/rsta.2012.0012