• 제목/요약/키워드: minimal rank

검색결과 37건 처리시간 0.024초

BEYOND THE CACTUS RANK OF TENSORS

  • Ballico, Edoardo
    • 대한수학회보
    • /
    • 제55권5호
    • /
    • pp.1587-1598
    • /
    • 2018
  • We study additive decompositions (and generalized additive decompositions with a zero-dimensional scheme instead of a finite sum of rank 1 tensors), which are not of minimal degree (for sums of rank 1 tensors with more terms than the rank of the tensor, for a zero-dimensional scheme a degree higher than the cactus rank of the tensor). We prove their existence for all degrees higher than the rank of the tensor and, with strong assumptions, higher than the cactus rank of the tensor. Examples show that additional assumptions are needed to get the minimally spanning scheme of degree cactus +1.

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX PRODUCTS OVER SEMIRINGS

  • Song, Seok-Zun;Cheon, Gi-Sang;Jun, Young-Bae
    • 대한수학회지
    • /
    • 제45권4호
    • /
    • pp.1043-1056
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix ordered pairs which satisfy multiplicative properties with respect to spanning column rank of matrices over semirings.

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX SUMS OVER SEMIRINGS

  • Song, Seok-Zun
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.301-312
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix pairs which satisfy additive properties with respect to spanning column rank of matrices over semirings.

ON THE m-POTENT RANKS OF CERTAIN SEMIGROUPS OF ORIENTATION PRESERVING TRANSFORMATIONS

  • Zhao, Ping;You, Taijie;Hu, Huabi
    • 대한수학회보
    • /
    • 제51권6호
    • /
    • pp.1841-1850
    • /
    • 2014
  • It is known that the ranks of the semigroups $\mathcal{SOP}_n$, $\mathcal{SPOP}_n$ and $\mathcal{SSPOP}_n$ (the semigroups of orientation preserving singular self-maps, partial and strictly partial transformations on $X_n={1,2,{\ldots},n}$, respectively) are n, 2n and n + 1, respectively. The idempotent rank, defined as the smallest number of idempotent generating set, of $\mathcal{SOP}_n$ and $\mathcal{SSPOP}_n$ are the same value as the rank, respectively. Idempotent can be seen as a special case (with m = 1) of m-potent. In this paper, we investigate the m-potent ranks, defined as the smallest number of m-potent generating set, of the semigroups $\mathcal{SOP}_n$, $\mathcal{SPOP}_n$ and $\mathcal{SSPOP}_n$. Firstly, we characterize the structure of the minimal generating sets of $\mathcal{SOP}_n$. As applications, we obtain that the number of distinct minimal generating sets is $(n-1)^nn!$. Secondly, we show that, for $1{\leq}m{\leq}n-1$, the m-potent ranks of the semigroups $\mathcal{SOP}_n$ and $\mathcal{SPOP}_n$ are also n and 2n, respectively. Finally, we find that the 2-potent rank of $\mathcal{SSPOP}_n$ is n + 1.

RANKS OF SUBMATRICES IN A GENERAL SOLUTION TO A QUATERNION SYSTEM WITH APPLICATIONS

  • Zhang, Hua-Sheng;Wang, Qing-Wen
    • 대한수학회보
    • /
    • 제48권5호
    • /
    • pp.969-990
    • /
    • 2011
  • Assume that X, partitioned into $2{\times}2$ block form, is a solution of the system of quaternion matrix equations $A_1XB_1$ = $C_1,A_2XB_2=C_2$. We in this paper give the maximal and minimal ranks of the submatrices in X, and establish necessary and sufficient conditions for the submatrices to be zero, unique as well as independent. As applications, we consider the common inner inverse G, partitioned into $2{\times}2$ block form, of two quaternion matrices M and N. We present the formulas of the maximal and minimal ranks of the submatrices of G, and describe the properties of the submatrices of G as well. The findings of this paper generalize some known results in the literature.

Characterizations of Zero-Term Rank Preservers of Matrices over Semirings

  • Kang, Kyung-Tae;Song, Seok-Zun;Beasley, LeRoy B.;Encinas, Luis Hernandez
    • Kyungpook Mathematical Journal
    • /
    • 제54권4호
    • /
    • pp.619-627
    • /
    • 2014
  • Let $\mathcal{M}(S)$ denote the set of all $m{\times}n$ matrices over a semiring S. For $A{\in}\mathcal{M}(S)$, zero-term rank of A is the minimal number of lines (rows or columns) needed to cover all zero entries in A. In [5], the authors obtained that a linear operator on $\mathcal{M}(S)$ preserves zero-term rank if and only if it preserves zero-term ranks 0 and 1. In this paper, we obtain new characterizations of linear operators on $\mathcal{M}(S)$ that preserve zero-term rank. Consequently we obtain that a linear operator on $\mathcal{M}(S)$ preserves zero-term rank if and only if it preserves two consecutive zero-term ranks k and k + 1, where $0{\leq}k{\leq}min\{m,n\}-1$ if and only if it strongly preserves zero-term rank h, where $1{\leq}h{\leq}min\{m,n\}$.

WHEN IS THE CLASSIFYING SPACE FOR ELLIPTIC FIBRATIONS RANK ONE?

  • YAMAGUCHI TOSHIHIRO
    • 대한수학회보
    • /
    • 제42권3호
    • /
    • pp.521-525
    • /
    • 2005
  • We give a necessary and sufficient condition of a rationally elliptic space X such that the Dold-Lashof classifying space Baut1X for fibrations with the fiber X is rank one. It is only when X has the rational homotopy type of a sphere or the total space of a spherical fibration over a product of spheres.

Time-delayed State Estimator for Linear Systems with Unknown Inputs

  • Jin Jaehyun;Tahk Min-Jea
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권1호
    • /
    • pp.117-121
    • /
    • 2005
  • This paper deals with the state estimation of linear time-invariant discrete systems with unknown inputs. The forward sequences of the output are treated as additional outputs. In this case, the rank condition for designing the unknown input estimator is relaxed. The gain for minimal estimation error variance is presented, and a numerical example is given to verify the proposed unknown input estimator.