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Time-delayed State Estimator for Linear Systems with Unknown Inputs

Jaehyun Jin and Min-Jea Tahk

Abstract: This paper deals with the state estimation of linear time-invariant discrete systems with
unknown inputs. The forward sequences of the output are treated as additional outputs. In this case,
the rank condition for designing the unknown input estimator is relaxed. The gain for minimal
estimation error variance is presented, and a numerical example is given to verify the proposed

unknown input estimator.
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1. INTRODUCTION

The unknown input observer (UIO), a unique
observer that can estimate the states of dynamic
systems in the presence of unknown inputs, has been
studied for three decades. After Wang et al. [1]
proposed a reduced-order UIO structure and Kudva et
al. [2] derived conditions for the existence of a stable
UlO, a number of studies have followed. Detailed
surveys were presented at [3,4].

Recently, a filtering problem for systems with
unknown inputs and known noises has been receiving
a great deal of attention. Focus has been placed on
estimating the states with minimal error variance in
the presence of unknown inputs. Chen and Patton [5]
as well as Hou and Patton [6] presented optimal filters
similar to the Kalman filter. The gain was determined
to allow the state estimation error to have minimum
variance. Darouach et al. [7,8] presented an optimal
estimator and predictor filters.

In this paper, a design method of an unknown input
estimator is dealt with. In particular, the rank
condition for design and filter gains are explored. The
unknown inputs must appear separately in the output
space for unknown-input decoupled estimation. The
condition is mathematically represented as a rank
condition in which the rank of the unknown input
matrix multiplied by the output matrix has to be equal
to its own rank. The authors [9] showed that the rank
condition could be relaxed by using forward
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sequences of the output (¥, Yii2, -..), signifying

time-delayed estimation. In this paper, the authors
extend the result of [9] to the filtering problem, and
derive an optimal gain for minimal estimation error
variance for linear time-invariant discrete systems.

2. STATE ESTIMATION WITH UNKNOWN
INPUTS

Consider the following linear time-invariant

discrete system with unknown inputs

Xp41 = Axk +Buk +Mf‘k +Vk’,

(M

Vi =Cxp +wy,

!
where x;, eR", yr eR', u, eR™, and f, e R’

are the state, output, input, and unknown input
. n I .

variables. vk €R" and w; € are independent

zero mean white noise with covariance matrices Tk

and Ry . The matrices written at (1) are assumed to
be known and have appropriate dimensions. The
estimator based on an unknown input observer is

Xpy1 = A%y + Buy + Ko (v — ) (2)
+ Ky (Vi1 = Pas1 )

where Yk =C%; and Via = CAX, +CBuy | The state
estimation error equation is written as

€l = X4t — gyl
=[1 - K, C) - KoCley +(M - Ky CM)f (3)
+(I = K(Chvy = Kowy — KWy |

If M -K,CM =0, the estimation error is decoupled
from unknown inputs. There is a solution matrix K, if
the following rank condition is satisfied [2,10,11]:



118

CM
rank (CM)zrank{Mjlzp. 4)

The remaining part is a familiar form to the Kalman
filter problem. If the error system matrix
([(1 - K,C)4-K,C)) is stable, the expectation of the

estimation error converges to zero. The condition of
the stability is that the original system of (1) must
have no unstable transmission zero.

The authors [9] demonstrated that the rank
condition could be relaxed, i.e., even though the rank
condition is not satisfied, an unknown input observer
can be designed by using the output’s forward

sequences (Vi+2, Yi+3, ...) if the system inversion
condition is satisfied. It was also shown that the
forward sequences did not change the transmission
zeros of the original system.

Here, the concept is adopted for the estimation
problem of (1). Let’s assume that the system of (1)
does not satisfy the rank condition but satisfies the
system inversion condition [10] as

rank(H ;) =rank(H,_)+ p, Q)
where
cM 0
H, = : i (6)
cA¥'m cM

The proposed unknown input estimator for this
system is

Yi— j’k
Yivd — j’k+d
where
Yk ¢ 0 0 Uk
Y+l C4 CB 0 U
. = . X + . . .
Vivd | | CA” c4’'B CB || ¥+ d-1
0 e 0 fi
CM 0
n ] fk.+1
cA™'M CM | fisan ®
0 e 0 vy wy
n C o Ve + W/f+1
: 0
ca™! C L Visan Wita

=Cx; + Dy + Nfy +Tv, +w,,
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Vk ¢ 0 0 uj
5 cA CB 0
S Y+ - U1
B S AL . )
Frra] |ca? ca4%'B .. CB |[#k+d
EgAk +5uk
The estimation error is given as
k41 = Xl = Xl
=[(1—K1C—KZCA~~~—KdCAd_1)A—KOC]ek
cM 0
YR T O
ca L ocm (10)
C 0
[0 ]-[k ] P W
cad1 ¢
- [k, Ky -

The estimation error can be decoupled from
unknown inputs f; if

rank(Hd)zrank{M} (11)
H,
where M =[M 0 ---]. Then,
[ M 0 0 0]
_ CM 0 e 0
M
rank =rank | CAM CM 0
Hy : :
cA'M ca?m CM |
M 0 0 0 ]
0 0 0
=rank | O CM 0
|0 CcaPm CM |
=rank[M]+rank[Hg_;]. (12)

(11) is equal to the system inversion condition of (5).
Finally, the estimation error is decoupled from
unknown inputs. The remaining element is

€4l = Xkl ~ Xk+l

= [(1 ~K,C-K,CA-+— K CA A - KOC} e
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C 0
+[1 0 -]-[K, -] : Vi
ca!l ... C
-[Ko Kq]®
=4 - k,Cle, - Kgw, — K, , + 5, , (13)
where Wi/ =[Wk+1 Wk+d]T-

The next step is to determine the gain matrix K.
The variance of the state estimation error is a common
performance index for this selection. If the estimation

error covariance matrix % is defined as
h-lad ) (14)
the update of the covariance matrix is given as

B = E|:ek+1ekT+1:|
—[A-KoC]R[A-KoCT +KoRK]
+E_EkET + 50, ST o (15)
— AR A" + KR, KT + 50,8
[ Koy =ARCT V[ Ko - ZPkCTJT

—Aap.cTy 'cp 4t
where V = (CPk cT +R, ) If we select K, as

- 1
Ko :APkCT(CPkCTJrRk) (16)
the covariance matrix of €x+1 may be minimum as in

B =E[€k+1€kT+1}
:Z(Pk —PkCTV"CPk)ZT (17)
+ KR, KT +50,57"

The steady state value of £k and the resulting gain
are given as

p=7lp-pcTv'cPli" +KRK" +5057, (18)
_ 1
Kq =APCT(CPCT +R) : (19)

This is the final result of the derivation. In the next
section, a numerical example is presented to illustrate
the design of an unknown input estimator and to
verify the derived results.

3. NUMERICAL EXAMPLE

Let’s consider the following example system.
Known inputs are omitted without loss of generality.

0.1
A= . M:

03
0.9

1 00 O
C= s
{—1 11 —1}

¢0=001/,, R=0.01/,

10
0.2 0 1

1 of
In this case, rank(CM)=1zrank(M)=2 and

rank (H, )=3 = rank(H, ) + rank (M) .
the following estimator:

So we propose

Vi — Pk
S = A%+ [Ky Ki Ko || yes1 = Fka |- 2D
Vi+2 — f’k+2

The gains [K 1 K 2] are determined from the null

space of [MT HzT]T as

1 0 0 0
2/7 0 0 -10/7
K, = , K, = . 22
=l ol 2Tl o (22)
2/7 0 0 -10/7

(13) is written as

0 0 0 0
-3/7 9/7 3/7 -9/7

€re1 = 1 0 1 0 A=Ky C e,
-3/7 2/7 3/7 =2/17
0 0 0 O o 0 0 0
11-3 9 3 -9 —-10 10 10 —-10(_
+— Vi
71-7 0 7 0 0O 0 0 © (23)
-3 2 3 -2 -10 10 10 -10

w,
-Kow, —[Ki K] {W:t }
+

The steady state values of £x and Ko are given as

0.0101 0.0029 0.0100
~10.0029 0.2236 0.0099
0.0100 0.0099 0.0318

0.0029 0.1320 0.0117

0.0029
0.1320
001177 @9
0.1123
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0o 0
~0.0857 —0.0514
°7| 01000  0.0600
0.0143  0.0086

The eigenvalues of (Z - KOC) are 0, 0, 0, and 0.3.
The assumed unknown inputs are

J1(2) =sin(0.1¢) + 0.2sin(0.37),

(25)
£>(t) = sin(0.05¢) +0.1sin(0.5¢),
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Fig. 1. States and their estimation.

and the states’ initial conditions are 0.1, 0.1, 0.1, and
0.1. The time step size is set to 0.1. The following
figures indicate the simulation results.

Discussion: The solid lines represent the states, and
the dashed lines are their estimation. Actually, the
states are delayed, i.e., we shifted the states left
(backward) for comparison with estimation. This
means that the current filter outputs are the estimation
of the states at two steps prior (X;_» vs. X;). The
states are estimated satisfactorily. Even though the
system does not satisfy the original rank condition for
UIO design, the unknown inputs do not affect the state
estimation. Also, we have obtained the minimum
variance estimation. Unlike existing approaches, we
can attain the minimum variance estimation decoupled
from the unknown inputs if we relax the rank
condition. The results verify the derivation of the

paper.
4. CONCLUSION

In this paper, the authors have proposed a state
estimator for linear discrete systems with unknown
inputs. We have named it an unknown input estimator.
Especially, we have relaxed the rank condition by
augmenting the forward sequences of the outputs. We
have illustrated that the system inversion condition is
equal to the relaxed rank condition. Furthermore, the
gain for the minimum variance of estimation error has
been derived. The proposed method has been verified
by a simulation study.

Unknown input observers are applicable to fault
detection, disturbance decoupling, etc. We believe that
the proposed design method would be highly
beneficial in extending the applicability of unknown
input estimators.
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