• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.03 seconds

Effect of Zinc and Zirconium on Microstructure and Mechanical Property in Squeeze Cast Magnesium Alloy (용탕단조 마그네슘합금의 조직과 기계적 성질에 미치는 Zn과 Zr의 영향)

  • Choi, Young-Doo;Choi, Jung-Chul;Chang, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 1999
  • Mg-Zn-Zr ternary alloys containing 6wt% Zn and (0, 0.4, 0.6)wt% Zr, which is added for grain refinement, can be cast into complex shape by squeeze casting. The influence of Zn and Zr as additional elements on microstructure and mechanical characteristics is investigated by OM, SEM, WDX, XRD and microvickers hardness measurement. The microstructure of Mg-Zn-Zr alloys consists of primary ${\alpha}-Mg$ and MgZn eutectic compound between dendrites. The grain size is decreased from $136{\mu}m$ to $97\;{\mu}m$ by Zr addition, resulting in that the hardness is increased from 42Hv to 59Hv. Furthermore, the grain size is changed to $83{\beta}$ and the hardness is increased to 65Hv by additional infiltration pressure. These results indicate that the Zr addition and additional infiltration pressure are effective for grain refinement acting as an important factor to increase the hardness. The increment in hardness by the Zr addition is slightly larger than that by the additional infiltration pressure.

  • PDF

Effect of laser heat-treatment on microstructure and micro-hardness of HVOF-sprayed WC-CoCr coating

  • Zhang, Shi-Hong;Cho, Tong-Yul;Yoon, Jae-Hong;Fang, Wei;Joo, Yun-Kon;Song, Ki-Oh;Li, Ming-Xi
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.138-139
    • /
    • 2007
  • The microstructure and micro-hardness of high velocity oxygen fuel-sprayed (HVOF) WC-CoCr coatings are comparatively studied for both before and after laser heat-treatment (LT) of the coatings. The results indicate that compared to HVOF WC-CoCro coating, the laser treatment has eliminated the pores almost entirely providing a more homogeneous and densified microstructure. And the compact interface of the coating with substrate is achieved by laser treatment. The thickness of the coating has decreased from 300 ${\mu}m$ to 225 ${\mu}m$ As a result, the average porosity is five times higher in HVOF coating than in the coating by laser treatment. The laser treatment has produced a considerable increment in the hardness of the coating near surface whose average value increases from Hv0.2=1262.4 in the HVOF-sprayed coating to Hv0.2=1818.7 in the coatings treated with laser.

  • PDF

A Bootstrap Lagrangian Multiplier Test for Market Microstructure Noise in Financial Assets (금융자산의 시장 미시구조 잡음에 대한 부트스트래핑 라그랑지 승수 검정)

  • Kim, Hyo Jin;Shin, Dong Wan;Park, Jonghun;Lee, Sang-Goo
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.189-200
    • /
    • 2015
  • Stationary bootstrapping is applied to a Lagrangian multiplier (LM) test to test market microstructure noise (MMN) in financial asset prices. A Monte-Carlo experiment shows that the bootstrapping method improves the size of the original LM test which has some size distortion for conditional heteroscedastic models. The proposed test is illustrated for real data sets like KOSPI index and Won-Dollar exchange rate.

Investigation of High Temperature Deformation Behavior in Compression and Torsion of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 비틀림 및 압축변형에 따른 고온변형거동 고찰)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Hong, J.K.;Park, N.K.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.435-438
    • /
    • 2008
  • High temperature deformation of Ti-6Al-4V alloy with a lamellar colony microstructure was investigated by hot compression and torsion tests. The torsion and compression tests were carried out under a wide range of temperatures and strain rates with true strain up to 2 and 0.7, respectively. The processing maps were generated on the basis of compression and torsion test data and using the principles of dynamic materials modeling (DMM). The shapes of the strain-stress curves in alpha-beta region and processing maps obtained on the two different tests have been compared with a view to evaluate the effect of the microstructure evolution on the flow softening behavior of Ti-6Al-4V alloy with a lamellar colony microstructure.

  • PDF

Effect of Cooling Rates on Mechanical Properties and Microstructure of Inconel Alloys (인코넬 합금의 미세조직과 기계적 특성에 미치는 냉각속도 영향)

  • Park, No-Kyeong;Lee, Ho-Seong;Chai, Young-Suck
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.555-559
    • /
    • 2007
  • The mechanical properties and microstructure of Inconel 690 and 600 alloys with various cooling rates were investigated. Optical microscopy and scanning electron microscopy observations indicated that in case of the cooling rate of $0.5^{\circ}C/min$, discontinuous carbides along the grain boundaries were formed and when the cooling rate was $10^{\circ}C/min$, continuous carbides were formed in Inconel 690 and 600 alloys. For the annealed Inconel 690 alloy with high Cr content, a lot of annealing twins, which led the preferential growth of (111) planes, were observed. However, the annealed Inconel 600 alloy with low Cr content showed a few annealing twins and the preferential growth of (200) planes. Inconel 600 alloy had a larger value of ultimate tensile strength (UTS) than Inconel 690 alloy.

Microsstructure of Sputter-Deposited and Annealed Cu-Cr, Cu-Ti Alloy Films on Polyimide Substrate and Their Adhesion Property (폴리이미드에 스퍼터 증착한 Cu-Cr, Cu-Ti 합금박막의 열처리 전후의 접착력과 미세구조)

  • 서환석;김기범
    • Journal of Surface Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.261-272
    • /
    • 1994
  • Both Cu-Cr and Cu-Ti alloy films with different composition were prepared by dc magnetron sputtering onto polyimide substrate and their adhesion and microstructure were observed. In addition, the effect of heat treatment at $400^{\circ}C$ for 2 hours on the variation of adhesion properties and on the changess of microstructure were investigated. Cu-Cr alloy films have crystalline structure of either for or bcc phase depending on the composition of the film. However, the Cu-Ti alloy film forms fcc phase at low Ti concentration while it forms an amorphous phase as the Ti concentration in the films is increased to more than 25at.%. TEM analysis reveal that the microstructure of Cu-Cr and Cu-Ti films forms an open structure with vacant spaces. The adhesion between Cu-Cr, Cu-Ti alloy films and polyimide substrate is relatively good before the heat treatment, but is noticeably reduced after the heat treatment. In particular, the adhesion strength is significantly reduced in the Cu-Ti alloy films after the heat treatment. The reduction of adhesion strength after the heat treatment is identified to relate with the formation of oxide phases at the metal/polyimide interface by AES(Auger Electron Spectroscopy).

  • PDF

A Comparative Study of CrN Coatings Deposited by DC and Inductively Coupled Plasma Magnetron Sputtering (DC 스퍼터법과 유도결합 플라즈마 마그네트론 스퍼터법으로 증착된 CrN 코팅막의 물성 비교연구)

  • Seo, Dae-Han;Chun, Sung-Yong
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.3
    • /
    • pp.123-129
    • /
    • 2012
  • Nanocrystalline CrN coatings were fabricated by DC and ICP (inductively coupled plasma) assisted magnetron sputtering techniques. The effect of ICP power, ranging from 0 to 500 W, on coating microstructure, preferred orientation mechanical properties were systematically investigated with HR-XRD, SEM, AFM and nanoindentation. The results show that ICP power has an significant influence on coating microstructure and mechanical properties of CrN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Grain size of CrN coatings were decreased from 11.7 nm to 6.6 nm with increase of ICP power. The maximum nanohardness of 23.0 GPa was obtained for the coatings deposited at ICP power of 500 W. Preferred orientation in CrN coatings also vary with ICP power, exerting an effective influence on film nanohardness.

Changes in Physicochemical Properties of Baik-kimchi during Fermentation (백김치 숙성중 물리화학적 특성변화)

  • 문수경;류홍수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1013-1020
    • /
    • 1997
  • To elicit the effect of fermentation on food quality of the watery Chinese cabbage pickles without fish sauce and red pepper paste(Baik-kimchi), changes in physicochemical properties and microstructure of fiber components were studied. Better water holding capacity(WHC) was showed in Baik-kimchi fermented at $25^{\circ}C$ than that of Baik-kimchi fermented at 5$^{\circ}C$. WHC measured at pH 2 and 6 were ranged from 10.18 to 16.79g/g dried sample for Baik-kimchi fermented at $25^{\circ}C$ and 6.51~14.58g/g dried sample for sample for samples at 5$^{\circ}C$, respectively. The higher WHC was resulted in pH controlled freeze-dried sample to pH 6 than that measured in pH 2 sample. The settling volume(SV) and oil adsorption capacity(OAC) increased with fermentation period and kept the same value for a little while, but slightly decreased in the over ripening period. Baik-kimchi fermented at $25^{\circ}C$ exhibited more shrunk microstructure of parenchyma cell and xylem than those of Baik-kimchi fermented at 5$^{\circ}C$. The appearance of SDF of the both Baik-kimchi ripened at 5$^{\circ}C$ and $25^{\circ}C$ could give granular shape, whereas the overripened Baik-kimchi had smooth surface of SDF. On the other hand, the IDF retained the original shape during fermentation.

  • PDF

The Properties of Multi-Layered Optical Thin Films Fabricated by Pulsed DC Magnetron Sputtering (Pulsed DC 마그네트론 스퍼터링으로 제조된 다층 광학박막의 특성)

  • Kim, Dong-Won
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.4
    • /
    • pp.211-226
    • /
    • 2019
  • Optical thin films were deposited by using a reactive pulsed DC magnetron sputtering method with a high density plasma(HDP). In this study, the effect of sputtering process conditions on the microstructure and optical properties of $SiO_2$, $TiO_2$, $Nb_2O_5$ thin films was clarified. These thin films had flat and dense microstructure, stable stoichiometric composition at the optimal conditions of low working pressure, high pulsed DC power and RF power(HDP). Also, the refractive index of the $SiO_2$ thin films was almost constant, but the refractive indices of $TiO_2$ and $Nb_2O_5$ thin films were changed depending on the microstructure of these films. Antireflection films of $Air/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/Glass$ structure designed by Macleod program were manufactured by our developed sputtering system. Transmittance and reflectance of the manufactured multilayer films showed outstanding value with the level of 95% and 0.3%, respectively, and also had excellent durability.

Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature

  • Sahani, Ashok Kr.;Samanta, Amiya K.;Roy, Dilip K. Singha
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.263-275
    • /
    • 2019
  • In the present work, Granulated Blast Furnace Slag (GBFS) and Fly ash (FA) were used as partial replacement of Natural Sand (NS) and Ordinary Portland Cement (OPC) by weight. One control mix, one with GBFS, three with FA and three with GBFS-FA combined mixes were prepared. Replacements were 50% GBFS with NS and 20%, 30% and 40% FA with OPC. Preliminary investigation on development of compressive strength was carried out at 7, 28 and 90 days to ensure sustainability of waste materials in concrete matrix at room temperature. After 90days, thermo-mechanical study was performed on the specimen for a temperature regime of $200^{\circ}-1000^{\circ}C$ followed by furnace cooling. Weight loss, visual inspection along with colour change, residual compressive strength and microstructure analysis were performed to investigate the effect of replacement of GBFS and FA. Although adding waste mineral by-products enhanced the weight loss, their pozzolanicity and formation history at high temperature played a significant role in retaining higher residual compressive strength even up to $800^{\circ}C$. On detail microstructural study, it has been found that addition of FA and GBFS in concrete mix improved the density of concrete by development of extra calcium silicate gel before fire and restricts the development of micro-cracks at high temperature as well. In general, the authors are in favour of combined replacement mix in view of high volume mineral by-products utilization as fire protection.