DOI QR코드

DOI QR Code

A Bootstrap Lagrangian Multiplier Test for Market Microstructure Noise in Financial Assets

금융자산의 시장 미시구조 잡음에 대한 부트스트래핑 라그랑지 승수 검정

  • Kim, Hyo Jin (Department of Statistics, Ewha Womans University) ;
  • Shin, Dong Wan (Department of Statistics, Ewha Womans University) ;
  • Park, Jonghun (Department of Industrial Engineering, Seoul National University) ;
  • Lee, Sang-Goo (Department of Computer Science and Engineering, Seoul National University)
  • Received : 2015.03.09
  • Accepted : 2015.03.25
  • Published : 2015.04.30

Abstract

Stationary bootstrapping is applied to a Lagrangian multiplier (LM) test to test market microstructure noise (MMN) in financial asset prices. A Monte-Carlo experiment shows that the bootstrapping method improves the size of the original LM test which has some size distortion for conditional heteroscedastic models. The proposed test is illustrated for real data sets like KOSPI index and Won-Dollar exchange rate.

본 논문에서는 정상적 부트스트래핑을 금융 자산 가격에서 시장 미시구조 잡음에 대한 라그랑지 승수 검정에 적용한다. 몬테 카를로 실험을 통해 부트스트래핑 방법이 조건부 이분산 모형을 적용한 기존 라그랑지 승수 검정의 유의수준 왜곡 문제를 개선함을 보인다. 이 검정을 KOSPI 지수와 원-달러 환율과 같은 실제 데이터에 적용한다.

Keywords

References

  1. Andersen, T. G., Benzoni, L. and Lund, J. (2002). An empirical investigation of continuous-time equity return models, The Journal of Finance, 57, 1239-1284. https://doi.org/10.1111/1540-6261.00460
  2. Bandi, F. M. and Russel, J. R. (2008). Microstructure noise, realized variance, and optimal sampling, Review of Economic Studies, 75, 339-369. https://doi.org/10.1111/j.1467-937X.2008.00474.x
  3. Bandi, F. M., Russell, J. R. and Yang, C. (2008). Realized volatility forecasting and option pricing, Journal of Econometrics, 147, 34-46. https://doi.org/10.1016/j.jeconom.2008.09.002
  4. Barndorff-Nielsen, O. E., Graversen, S. E., Jacod, J. and Shephard, N. (2006). Limit theorems for bipower variation in financial econometrics, Econometric Theory, 22, 677-719.
  5. Barndorff-Nielsen, O. E. and Shephard, N. (2002). Econometric analysis of realised volatility and its use in estimating stochastic volatility models, Journal of the Royal Statistical Society: Series B, 64, 253-280. https://doi.org/10.1111/1467-9868.00336
  6. Barndorff-Nielsen, O. E. and Shephard. N. (2006). Econometrics of testing for jumps in financial economics using bipower variation, Journal of Financial Econometrics, 4, 1-30.
  7. Bollerslev, T. and Zhou, H. (2002). Estimating stochastic volatility diffusion using conditional moments of integrated volatility, Journal of Econometrics, 109, 33-65. https://doi.org/10.1016/S0304-4076(01)00141-5
  8. Busch, T., Christensen, B. J. and Nielsen, M. O. (2011). The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets, Journal of Econometrics, 160, 48-57. https://doi.org/10.1016/j.jeconom.2010.03.014
  9. Giot, P., Laurent, S. and Petitjean, M. (2010). Trading activity, realized volatility and jumps, Journal of Empirical Finance, 17, 168-175. https://doi.org/10.1016/j.jempfin.2009.07.001
  10. Goncalves, S. and Meddahi, N. (2009). Bootstrapping realized volatility, Econometrica, 77, 283-306. https://doi.org/10.3982/ECTA5971
  11. Hansen, P. R. and Lunde, A. (2006). Realized variance and market microstructure noise, Journal of Business and Economic Statistics, 24, 127-161. https://doi.org/10.1198/073500106000000071
  12. Hwang, E. and Shin, D. W. (2013). Stationary bootstrapping realized volatility, Statistics and Probability Letters, 83, 2045-2051. https://doi.org/10.1016/j.spl.2013.05.005
  13. Hwang, E. and Shin, D. W. (2014). A bootstrap test for jumps in financial economics, Economics Letters, 125, 74-78. https://doi.org/10.1016/j.econlet.2014.08.024
  14. McAleer, M. and Medeiros, M. C. (2008). Realized volatility: A review, Econometric Reviews, 27, 10-45. https://doi.org/10.1080/07474930701853509
  15. Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap, Journal of the American Statistical Association, 89, 1303-313. https://doi.org/10.1080/01621459.1994.10476870
  16. Shin, D. W. and Hwang, E. (2015). Lagrangian multiplier test for market microstructure noise with applications to sampling interval determination for realized volatilities, Economics Letters, Accepted.
  17. Zhang, L., Mykland, P. A. and Ait-Sahalia, Y. (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data, Journal of the American Statistical Association, 100, 1394-1411. https://doi.org/10.1198/016214505000000169