• 제목/요약/키워드: microenvironment

검색결과 362건 처리시간 0.029초

돼지 골수 조혈 세포의 이종 마우스 동물 모델 생체 증식 및 분화 특성 (Effective Reconstitution of Porcine Hematopoietic Cells in Newborn NOD/SCID Mice Xenograft)

  • 이용수;이현주;김태식;김혜선;김유경;김재환;박진기;정학재;장원경;김동구
    • Reproductive and Developmental Biology
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2008
  • 본 연구는 돼지 골수에서 존재하는 조혈 줄기 세포 및 전구 세포를 이용해 이종 동물 모델인 태아 마우스 복강 생체 이식을 통하여 돼지 조혈 세포의 이종 조혈 조직에서의 증식과 분화 특성을 규명하였다. 선천성 면역 부전 마우스인 NOD/SCID 마우스 태아 조혈 환경에 돼지 골수 유래 조혈 줄기 세포 및 전구 세포를 이식하고, 이식 후 5주령에 마우스 조혈기관에서의 돼지 조혈 세포의 증식과 분화 특성을 돼지 특이적 항체 면역 염색으로 유세포 분석을 실시한 결과, 마우스 조혈 조직인 골수, 흉선, 간장, 비장 및 림파절에서 돼지 조혈 세포의 분화 및 증식이 관찰되었다. 특히 돼지의 T 면역세포가 골수계 세포에 비해서 높은 chimerism이 관찰되어 태생 초기의 NOD/SCID 조혈 환경에 의한 특이적 T 면역세포의 증식에 적합한 조혈 환경을 제공하고 있다는 사실이 밝혀졌다. 본 마우스 신생 NOSD/SCID 복강 이식 동물 모델을 이용해 돼지 T 면역세포의 분화 발달 연구 및 이종 장기 이식 기전 연구에 좋은 모델로서 활용이 기대된다.

Loperamide로 유도된 변비 증상에 유산균 제제가 미치는 영향 (Effect of Lactic Acid Bacteria Powder on Loperamide-induced Constipation in Rat)

  • 김은영;조경애;안소현;박성선;손흥수;한성희
    • 한국식품영양학회지
    • /
    • 제28권6호
    • /
    • pp.956-964
    • /
    • 2015
  • Loperamide를 통해 변비가 유발된 실험동물에 유산균 투여가 미치는 영향을 알아보기 위하여 14일 동안 저농도($10^7CFU/mL$ per kg of body weight)의 유산균과 고농도($10^9CFU/mL$ per kg of body weight)의 유산균을 투여한 후, 변비개선 효과를 측정하였다. 그 결과, 변비 유발 후 유산균을 투여한 실험군들의 경우, 대조군(CON)에 비하여 변의 개수, 변 중량 및 수분 함량이 유의적으로 증가하였다. 또한 소화관 이동률을 조사한 결과, 대조군(CON)에 비하여 변비 유발 후 유산균을 투여한 군에서 정상대조군(NOR)인 군과 유사한 이동성을 보이는 것을 확인하였다. 변비가 유발된 실험동물의 혈청 중성지방, 총 콜레스테롤 함량, HDL-콜레스테롤 함량에는 유산균 투여 유무 및 유산균의 농도에 대한 영향을 크게 받지 않은 것으로 보여진다. 고농도의 유산균을 섭취시킨 실험동물군(HIG)의 경우, 분변으로 유도된 아세트산과 프로피온산의 함량이 유의적으로 높게 나타났다. 또한 헤마톡실린 및 에오신 염색을 통한 장내 상피세포 관찰을 통해 유산균 분말 투여시 장 점막의 길이와 넓이가 유의적으로 증가하는 것을 확인하였다. 메타지노믹스 유전자 분석을 통한 미생물 분포의 상동성을 비교해 본 결과, 고농도의 유산균 투여군(HIG)이 정상대조군(NOR)과 가장 흡사한 분포 특성을 가지고 있음을 보여주었다. 이상의 결과에 따라 유산균 제제는 변비 개선 효과가 있다고 볼 수 있다.

치은 각화상피세포와 섬유아세포를 이용한 삼차원적 배양시 중층화 동안의 변화 (Change of Stratification of Three Dimensional Culture by Gingival Keratinocytes & Fibroblasts)

  • 정태흡;현하나;김윤상;김은철;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제32권1호
    • /
    • pp.129-142
    • /
    • 2002
  • Epithelial-mesenchymal interaction plays a important role in cell growth and differentiation. This interaction is already well known to have an importance during the organ development as well as cell growth and differentiation. However, in vitro experimental model is not well developed to reproduce in vivo cellular microenvironment which provide a epithelial-mesenchymal interaction. Because conventional monolayer culture lacks epithelial-mensenchymal interaction, cultivated cells have an morphologic, biochemical, and functional characteristics differ from in vivo tissue. Moreover, it's condition is not able to induce cellular differention due to submerged culture condition. Therefore, the aims of this study were to develop and evaualte the in vitro experimental model that maintains epithelial-mesenchymal interaction by organotypic raft culture, and to characterize biologic properties of three-dimensionally reconstituted oral keratinocytes by histological and immunohistochemical analysis. The results were as follow; 1. Gingival keratinocytes reconstituted by three-dimensional organotypic culture revealed similar morphologic characteristics to biopsied patient specimen showing stratification, hyperkeratinosis, matutation of epithelial architecture. 2. Connective tissue structure was matured, and there is no difference during stratification period of epithelial 3-dimensional culture. 3. The longer of air-exposure culture on three-dimensionally reconstituted cells, the more epithelial maturation, increased epithelial thickness and surface keratinization 4. In reconstitued mucosa, the whole epidermis was positively stained by anti-involucrin antibody, and there is no difference according to air-exposured culture period. 5. The Hsp was expressed in the epithelial layer of three-dimensionally cultured cells, especially basal layer of epidermis. The change of Hsp expression was not significant by culture stratification. 6. Connexin 43, marker of cell-cell communication was revealed mild immunodeposition in reconstitued epithelium, and there is no significant expression change during stratification. These results suggest that three-dimensional oragnotypic co-culture of normal gingival keratinocytes with dermal equivalent consisting type I collagen and gingival fibroblasts results in similar morphologic and immunohistochemical characteristics to in vivo patient specimens. And this culture system seems to provide adequate micro-environment for in vitro tissue reconstitution. Therefore, further study will be focused to study of in vitro gingivitis model, development of novel perioodntal disease therapeutics and epithelial-mensenchymal interaction.

인삼재배용 미생물 제품의 식물보호율과 변이계수와의 관계 (Relationship between Plant Protection Rate and Coefficient of Variation of Microbial Products for Ginseng Cultivation)

  • 이병대;밝훈
    • Journal of Ginseng Research
    • /
    • 제33권2호
    • /
    • pp.127-131
    • /
    • 2009
  • 시판되고 있는 인삼재배용 미생물제제에 대하여 인삼묘 입고병억제효과를 유묘포트시험으로 검정하였다. Rhizoctonia solani에 대하여는 리조렉스 (tolclofos-methyl)와 바리문 (validamycin-A)을 비교하여 검정하고 Pythium에는 리도밀 (metalaxyl)을 비교하였다. 리조렉스와 비교한 시험에서만 처리간 평균보호율 (Pm)의 차이에 유의성이 있었다. 최고효과를 보이는 미생물제 C-ISR2 Rhizoctonia solani에 대한 두 개의 시험에서 순보호율 (net Pm-total Pm-control Pm)이 33%와 33.6%였다. 대조구의 Pm이 58.6%인 경우 총보호율이 91.6%로, 환경조건이 좋은 포장에서는 미생물제로만 보호가 가능함을 나타낸다. C-ISR2의 Pythium에 대한 순 Pm은 26.4%였다. 한 병원균에 대한 미생물제의 순보호율은 일정한 것으로 보였다. Pm과 CV간에는 세 번 다 부의 직선상관관계를 부였다. 이는 미생물제나 화학약제가 모두 보호체계가 같으며 미생물제제가 미세환경에 예민하여 변이가 커지는 것으로 보인다. 미생물제와 대조구의 Pm과 CV의 상관식에서 CV=0에서의 절편 값은 미생물제의 이론적 최대보호율이 된다. 기본 발병환경의 개선 (무처리구의 보호율증대)에 따라 기존 미생물제제로 화학농약을 대체할 수 있다.

상아모세포의 조건배지를 이용한 백악모세포의 분화와 석회화 조절 (Regulation of cementoblast differentiation and mineralization using conditioned media of odontoblast)

  • 문상원;김혜선;송혜정;최홍규;박종태;김흥중;장현선;박주철
    • Journal of Periodontal and Implant Science
    • /
    • 제36권2호
    • /
    • pp.385-396
    • /
    • 2006
  • For the regeneration of periodontal tissues, the microenvironment for new attachment of connective tissue fibers should be provided, At this point of view, cementum formation in root surface plays a key role for this new attachment. This study was performed to figure out which factor promotes differentiation of cementoblast Considering anatomical structure of tooth, we selected the cells which may affect the differentiation of cementoblast - Ameloblast, OD11&MDPC23 for odontoblasts, NIH3T3 for fibroblsts and MG63 for osteoblasts. And OCCM30 was selected for cementoblast cell line. Then, the cell lines were cultured respectively and transferred the conditioned media to OCCM30. To evaluate the result, Alizarin red S stain was proceeded for evaluation of mineralization. The subjected mRNA genes are bone sialoprotein(BSP), alkaline phosphate(ALP) , osteocalcin(OC), type I collagen(Col I), osteonectin(SPARC ; secreted protein acidic and rich in cysteine). Expression of the gene were analysed by RT-PCR, The results were as follows: 1. For alizarin red S staining, control OCCM30 didn't show any mineralized red nodules until 14 days. But red nodules started to appear from about 4 days in MDPC-OCCM30 & OD11-OCCM30. 2. For results of RT-PCR, ESP mRNAs of control-OCCM30 and others were expressed from 14 days, but in MDPC23-OCCM30 & OD11-OCCM30 from 4 days. Like this, the gene expression of MDPC23-OCCM30 & OD11-OCCM30 were detected much earlier than others. 3. For confirmation of odontoblast effect on cementoblast, conditioned media of osteoblasts(MG63) which is mineralized by producing matrix vesicles didn't affect on the mineralized nodule formation of cementoblasts(OCCM30). This suggest the possibility that cementoblast mineralization is regulated by specific factor in dentin matrix protein rather than matrix vesicles. Therefore, we proved that the dentin/odontoblast promotes differentiation/mineralization of cementoblasts. This new approach might hole promise as diverse possibilities for the regeneration of tissues after periodontal disease.

Airway Smooth Muscle Sensitivity to Methacholine in Precision-Cut Lung Slices (PCLS) from Ovalbumin-induced Asthmatic Mice

  • Kim, Hae Jin;Kim, Yeryung;Park, Su Jung;Bae, Boram;Kang, Hye-Ryun;Cho, Sang-Heon;Yoo, Hae Young;Nam, Joo Hyun;Kim, Woo Kyung;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권1호
    • /
    • pp.65-71
    • /
    • 2015
  • Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR) and reversible airway obstruction. Methacholine (MCh) is widely used in broncho-provocation test to evaluate airway resistance. For experimental investigation, ovalbumin-induced sensitization is frequently used in rodents (Ova-asthma). However, albeit the inflammatory histology and AHR in vivo, it remains unclear whether the MCh sensitivity of airway smooth muscle isolated from Ova-asthma is persistently changed. In this study, the contractions of airways in precision-cut lung slices (PCLS) from control, Ova-asthma, and IL-13 overexpressed transgenic mice (IL-13TG) were compared by analyzing the airway lumen space (AW). The airway resistance in vivo was measured using plethysmograph. AHR and increased inflammatory cells in BAL fluid were confirmed in Ova-asthma and IL-13TG mice. In the PCLS from all three groups, MCh concentration-dependent narrowing of airway lumen (${\Delta}AW$) was observed. In contrast to the AHR in vivo, the $EC_{50}$ of MCh for ${\Delta}AW$ from Ova-asthma and IL-13TG were not different from control, indicating unchanged sensitivity to MCh. Although the AW recovery upon MCh-washout showed sluggish tendency in Ova-asthma, the change was also statistically insignificant. Membrane depolarization-induced ${\Delta}AW$ by 60 mM $K^+$ (60K-contraction) was larger in IL-13TG than control, whereas 60K-contraction of Ova-asthma was unaffected. Furthermore, serotonin-induced ${\Delta}AW$ of Ova-asthma was smaller than control and IL-13TG. Taken together, the AHR in Ova-asthma and IL-13TG are not reflected in the contractility of isolated airways from PCLS. The AHR of the model animals seems to require intrinsic agonists or inflammatory microenvironment that is washable during tissue preparation.

Association of Estrogen Receptor Alpha and Interleukin 6 Polymorphisms with Lymphovascular Invasion, Extranodal Extension, and Lower Disease-Free Survival in Thai Breast Cancer Patients

  • Sa-Nguanraksa, Doonyapat;Suntiparpluacha, Monthira;Kulprom, Anchalee;Kummalue, Tanawan;Chuangsuwanich, Tuenjai;Avirutnan, Panissadee;O-Charoenrat, Pornchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권6호
    • /
    • pp.2935-2940
    • /
    • 2016
  • Breast cancer is the most frequent type of cancer diagnosed among women worldwide and also in Thailand. Estrogen and estrogen receptors exert important roles in its genesis and progression. Several cytokines have been reported to be involved in the microenvironment that promotes distant metastasis via modulation of immune and inflammatory responses to tumor cells. Estrogen receptor genetic polymorphisms and several cytokines have been reported to be associated with breast cancer susceptibility and aggressiveness. To investigate roles of genetic polymorphisms in estrogen receptor alpha (ESR1) and interleukin 6 (IL6), breast cancer patients and control subjects were recruited from the Division of Head, Neck and Breast Surgery (Siriraj Hospital, Bangkok, Thailand). Polymorphisms in ESR1 (rs3798577) and IL6 (rs1800795 and rs1800797) were evaluated by real-time PCR in 391 breast cancer patients and 79 healthy controls. Associations between genetic polymorphisms and clinicopathological data were determined. There was no association between genetic polymorphisms and breast cancer susceptibility. However the ESR1 rs3798577 CT genotype was associated with presence of lymphovascular invasion (OR=2.07, 95%CI 1.20-3.56, p=0.009) when compared to the TT genotype. IL6 rs1800795 CC genotype was associated with presence of extranodal extension (OR= 2.30, 95%CI 1.23-4.31, p=0.009) when compared to the GG genotype. Survival analysis showed that IL6 rs1800797 AG or AA genotypes were associated with lower disease-free survival. These findings indicate that polymorphisms in ESR1 and IL6 contribute to aggressiveness of breast cancer and may be used to identify high risk patients.

Gender-independent efficacy of mesenchymal stem cell therapy in sex hormone-deficient bone loss via immunosuppression and resident stem cell recovery

  • Sui, Bing-Dong;Chen, Ji;Zhang, Xin-Yi;He, Tao;Zhao, Pan;Zheng, Chen-Xi;Li, Meng;Hu, Cheng-Hu;Jin, Yan
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.12.1-12.14
    • /
    • 2018
  • Osteoporosis develops with high prevalence in both postmenopausal women and hypogonadal men. Osteoporosis results in significant morbidity, but no cure has been established. Mesenchymal stem cells (MSCs) critically contribute to bone homeostasis and possess potent immunomodulatory/anti-inflammatory capability. Here, we investigated the therapeutic efficacy of using an infusion of MSCs to treat sex hormone-deficient bone loss and its underlying mechanisms. In particular, we compared the impacts of MSC cytotherapy in the two genders with the aim of examining potential gender differences. Using the gonadectomy (GNX) model, we confirmed that the osteoporotic phenotypes were substantially consistent between female and male mice. Importantly, systemic MSC transplantation (MSCT) not only rescued trabecular bone loss in GNX mice but also restored cortical bone mass and bone quality. Unexpectedly, no differences were detected between the genders. Furthermore, MSCT demonstrated an equal efficiency in rectifying the bone remodeling balance in both genders of GNX animals, as proven by the comparable recovery of bone formation and parallel normalization of bone resorption. Mechanistically, using green fluorescent protein (GFP)-based cell-tracing, we demonstrated rapid engraftment but poor inhabitation of donor MSCs in the GNX recipient bone marrow of each gender. Alternatively, MSCT uniformly reduced the $CD3^+T$-cell population and suppressed the serum levels of inflammatory cytokines in reversing female and male GNX osteoporosis, which was attributed to the ability of the MSC to induce T-cell apoptosis. Immunosuppression in the microenvironment eventually led to functional recovery of endogenous MSCs, which resulted in restored osteogenesis and normalized behavior to modulate osteoclastogenesis. Collectively, these data revealed recipient sexually monomorphic responses to MSC therapy in gonadal steroid deficiency-induced osteoporosis via immunosuppression/anti-inflammation and resident stem cell recovery.

Effects of 17β-Estradiol on Colonic Permeability and Inflammation in an Azoxymethane/Dextran Sulfate Sodium-Induced Colitis Mouse Model

  • Song, Chin-Hee;Kim, Nayoung;Sohn, Sung Hwa;Lee, Sun Min;Nam, Ryoung Hee;Na, Hee Young;Lee, Dong Ho;Surh, Young-Joon
    • Gut and Liver
    • /
    • 제12권6호
    • /
    • pp.682-693
    • /
    • 2018
  • Background/Aims: Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases (IBDs) such as ulcerative colitis. This dysfunction is caused by increased permeability and the loss of tight junctions in intestinal epithelial cells. The aim of this study was to investigate whether estradiol treatment reduces colonic permeability, tight junction disruption, and inflammation in an azoxymethane (AOM)/dextran sodium sulfate (DSS) colon cancer mouse model. Methods: The effects of $17{\beta}$-estradiol (E2) were evaluated in ICR male mice 4 weeks after AOM/DSS treatment. Histological damage was scored by hematoxylin and eosin staining and the levels of the colonic mucosal cytokine myeloperoxidase (MPO) were assessed by enzyme-linked immunosorbent assay (ELISA). To evaluate the effects of E2 on intestinal permeability, tight junctions, and inflammation, we performed quantitative real-time polymerase chain reaction and Western blot analysis. Furthermore, the expression levels of mucin 2 (MUC2) and mucin 4 (MUC4) were measured as target genes for intestinal permeability, whereas zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 4 (CLDN4) served as target genes for the tight junctions. Results: The colitis-mediated induced damage score and MPO activity were reduced by E2 treatment (p<0.05). In addition, the mRNA expression levels of intestinal barrier-related molecules (i.e., MUC2, ZO-1, OCLN, and CLDN4) were decreased by AOM/DSS-treatment; furthermore, this inhibition was rescued by E2 supplementation. The mRNA and protein expression of inflammation-related genes (i.e., KLF4, NF-${\kappa}B$, iNOS, and COX-2) was increased by AOM/DSS-treatment and ameliorated by E2. Conclusions: E2 acts through the estrogen receptor ${\beta}$ signaling pathway to elicit anti-inflammatory effects on intestinal barrier by inducing the expression of MUC2 and tight junction molecules and inhibiting pro-inflammatory cytokines.

중간엽줄기세포유래 엑소좀: 비세포치료제로서의 활용 (Mesenchymal Stem Cell-derived Exosomes: Applications in Cell-free Therapy)

  • 허준석;김진관
    • 대한임상검사과학회지
    • /
    • 제50권4호
    • /
    • pp.391-398
    • /
    • 2018
  • 중간엽줄기세포는 항염증능, 면역조절능 뿐만 아니라 다계통으로의 분화능 때문에 난치성 환자 치료를 위한 매력적인 대안적 치료방법으로 알려져 왔다. 지금까지 중간엽줄기세포의 이식 치료법은 면역질환, 심혈관질환, 암, 간질환 및 뇌졸중을 비롯한 다양한 질병의 전임상 및 임상적용에 긍정적인 결과를 가져왔다. 여러 연구들에 의하면, 중간엽줄기세포를 이용한 치료는 손상된 세포나 조직에 중간엽줄기세포가 이동하여 직접 세포를 대체하거나 분화시키는 작용이 아니라 중간엽줄기세포에서 분비하는 여러 인자들 즉, 주변분비 효과(paracrine effect)에 의한 것으로 확인되고 있다. 최근에 중간엽줄기세포 유래 엑소좀은 핵산, 단백질, 지질 등을 손상된 세포나 조직의 국소 미세환경으로 전달함으로써 세포간 상호작용을 통해 조직재생을 중재할 수 있는 중요한 역할을 하는 것으로 알려졌다. 엑소좀의 이용은 세포이식으로부터 발생할 수 있는 종양형성과 같은 다양한 위험성을 피할 수 있으므로 줄기세포 기반 치료 적용에 유용성이 매우 높다. 이러한 이유에서 중간엽줄기세포 유래 엑소좀은 재생의학 및 조직공학에서 안전하고 효율적인 치료적 도구(tool)가 될 수 있다. 여기에서 우리는 치료제로서의 중간엽줄기세포 유래 엑소좀의 정의와 역할에 대한 최신 지견과 함께 포괄적인 이해를 제공하고자 한다.