Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Jackson, J. A. & Kleerekoper, M. Osteoporosis in men: diagnosis, pathophysiology, and prevention. Medicine 69, 137-152 (1990). https://doi.org/10.1097/00005792-199005000-00002
- Hannan, M. T., Felson, D. T. & Anderson, J. J. Bone mineral density in elderly men and women: results from the Framingham osteoporosis study. J. Bone Miner. Res. 7, 547-553 (1992).
- Pacifici, R. Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J. Bone Miner. Res. 11, 1043-1051 (1996).
- Sui BD, et al. Stem cell-based bone regeneration in diseased microenvironments: Challenges and solutions. Biomaterials 2017; e-pub ahead of print 30 October 2017. https://doi.org/10.1016/j.biomaterials.2017.10.046.
- Sui, B. D., Hu, C. H., Zheng, C. X. & Jin, Y. Microenvironmental Views on Mesenchymal Stem Cell Differentiation in Aging. J. Dent. Res. 95, 1333-1340 (2016). https://doi.org/10.1177/0022034516653589
- Liu, Y., Wu, J., Zhu, Y. & Han, J. Therapeutic application of mesenchymal stem cells in bone and joint diseases. Clin. Exp. Med. 14, 13-24 (2014). https://doi.org/10.1007/s10238-012-0218-1
- Shi, Y. et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 20, 510-518 (2010). https://doi.org/10.1038/cr.2010.44
- Sui, B. D. et al. Recipient Glycemic Micro-environments Govern Therapeutic Effects of Mesenchymal Stem Cell Infusion on Osteopenia. Theranostics 7, 1225-1244 (2017). https://doi.org/10.7150/thno.18181
- Liu, Y. et al. Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis. J. Dent. Res. 93, 1124-1132 (2014). https://doi.org/10.1177/0022034514552675
- Cho, S. W. et al. Transplantation of mesenchymal stem cells overexpressing RANK-Fc or CXCR4 prevents bone loss in ovariectomized mice. Mol. Ther. 17, 1979-1987 (2009). https://doi.org/10.1038/mt.2009.153
- Lee, K. et al. Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J. Cell. Mol. Med. 15, 2082-2094 (2011). https://doi.org/10.1111/j.1582-4934.2010.01230.x
- An, J. H. et al. Transplantation of human umbilical cord blood-derived mesenchymal stem cells or their conditioned medium prevents bone loss in ovariectomized nude mice. Tissue Eng. Part. A. 19, 685-696 (2013). https://doi.org/10.1089/ten.tea.2012.0047
- Nielson, C. M., Klein, R. F. & Orwoll, E. S. Sex and the single nucleotide polymorphism: exploring the genetic causes of skeletal sex differences. J. Bone Miner. Res. 27, 2047-2050 (2012). https://doi.org/10.1002/jbmr.1723
- Sui, B. et al. Allogeneic mesenchymal stem cell therapy promotes osteoblastogenesis and prevents glucocorticoid-induced osteoporosis. Stem Cells Transl. Med. 5, 1238-1246 (2016). https://doi.org/10.5966/sctm.2015-0347
- Lien, C. Y., Chih-Yuan, Ho. K., Lee,O. K., Blunn,G. W. & Su, Y. Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells. J. Bone Miner. Res. 24, 837-848 (2009). https://doi.org/10.1359/jbmr.081257
- Ma, L. et al. Transplantation of mesenchymal stem cells ameliorates secondary osteoporosis through interleukin-17-impaired functions of recipient bone marrow mesenchymal stem cells in MRL/lpr mice. Stem Cell Res. Ther. 6, 104 (2015). https://doi.org/10.1186/s13287-015-0091-4
- Akiyama, K. et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell. Stem Cell 10, 544-555 (2012). https://doi.org/10.1016/j.stem.2012.03.007
- Yang, N. et al. Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J. Bone Miner. Res. 28, 559-573 (2013). https://doi.org/10.1002/jbmr.1798
- Liao, L. et al. TNF-alpha Inhibits FoxO1 by Upregulating miR-705 to Aggravate Oxidative Damage in Bone Marrow-Derived Mesenchymal Stem Cells during Osteoporosis. Stem Cells 34, 1054-1067 (2016). https://doi.org/10.1002/stem.2274
- Sui, B. et al. Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis. Sci. Rep. 6, 30186 (2016). https://doi.org/10.1038/srep30186
- Shao, B. et al. Estrogen preserves Fas ligand levels by inhibiting microRNA-181a in bone marrow-derived mesenchymal stem cells to maintain bone remodeling balance. FASEB J. 29, 3935-3944 (2015). https://doi.org/10.1096/fj.15-272823
- Zheng, C., Sui, B., Hu, C. & Jin, Y. Vitamin C promotes in vitro proliferation of bone marrow mesenchymal stem cells derived from aging mice. Nan. Fang. Yi. Ke. Da. Xue. Xue. Bao. 35, 1689-1693 (2015).
- Sui, B., Hu, C. & Jin, Y. Mitochondrial metabolic failure in telomere attritionprovoked aging of bone marrow mesenchymal stem cells. Biogerontology 17, 267-279 (2016). https://doi.org/10.1007/s10522-015-9609-5
- Chen, N. et al. microRNA-21 Contributes to Orthodontic Tooth Movement. J. Dent. Res. 95, 1425-1433 (2016). https://doi.org/10.1177/0022034516657043
- Hu, C. H. et al. miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci. Rep. 7, 43191 (2017). https://doi.org/10.1038/srep43191
- Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468-1486 (2010). https://doi.org/10.1002/jbmr.141
- Dempster, D. W. et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 28, 2-17 (2013). https://doi.org/10.1002/jbmr.1805
- Zhao, P. et al. Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application. Aging Cell 16, 1083-1093 (2017). https://doi.org/10.1111/acel.12635
- Liao, L. et al. Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis. 4, e600 (2013). https://doi.org/10.1038/cddis.2013.130
- Moverare-Skrtic, S. et al. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat. Med. 20, 1279-1288 (2014). https://doi.org/10.1038/nm.3654
- Yuan, X. et al. Psoralen and isopsoralen Ameliorate sex hormone deficiencyinduced osteoporosis in female and male mice. Biomed. Res. Int. 2016, 6869452 (2016).
- Fujita, T. et al. Breadth of the mandibular condyle affected by disturbances of the sex hormones in ovariectomized and orchiectomized mice. Clin. Orthod. Res. 4, 172-176 (2001). https://doi.org/10.1034/j.1600-0544.2001.040307.x
- Cenci, S. et al. Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc. Natl Acad. Sci. USA 100, 10405-10410 (2003). https://doi.org/10.1073/pnas.1533207100
- Cenci, S. et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J. Clin. Invest. 106, 1229-1237 (2000). https://doi.org/10.1172/JCI11066
- Wang, L. et al. IFN-gamma and TNF-alpha synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFkappaB signaling. Stem Cells 31, 1383-1395 (2013). https://doi.org/10.1002/stem.1388
- Cawthon, P. M. Gender differences in osteoporosis and fractures. Clin. Orthop. Relat. Res. 469, 1900-1905 (2011). https://doi.org/10.1007/s11999-011-1780-7
- Rupich, R. C., Specker, B. L., Lieuw-A-Fa, M. & Ho, M. Gender and race differences in bone mass during infancy. Calcif. Tissue Int. 58, 395-397 (1996). https://doi.org/10.1007/BF02509436
- Gilsanz, V. et al. Gender differences in vertebral body sizes in children and adolescents. Radiology 190, 673-677 (1994). https://doi.org/10.1148/radiology.190.3.8115609
- Aaron, J. E., Makins, N. B. & Sagreiya, K. The microanatomy of trabecular bone loss in normal aging men and women. Clin. Orthop. Relat. Res. 215, 260-271 (1987).
- Seeman, E. During aging, men lose less bone than women because they gain more periosteal bone, not because they resorb less endosteal bone. Calcif. Tissue Int. 69, 205-208 (2001). https://doi.org/10.1007/s00223-001-1040-z
- Most, W., van der Wee-Pals, L., Ederveen, A., Papapoulos, S. & Lowik, C. Ovariectomy and orchidectomy induce a transient increase in the osteoclastogenic potential of bone marrow cells in the mouse. Bone 20, 27-30 (1997). https://doi.org/10.1016/S8756-3282(96)00309-2
- Turner, R. T., Wakley, G. K. & Hannon, K. S. Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J. Orthop. Res. 8, 612-617 (1990). https://doi.org/10.1002/jor.1100080418
- Khosla, S., Oursler, M. J. & Monroe, D. G. Estrogen and the skeleton. Trends Endocrinol. Metab. 23, 576-581 (2012). https://doi.org/10.1016/j.tem.2012.03.008
- Novack, D. V. Estrogen and bone: osteoclasts take center stage. Cell. Metab. 6, 254-256 (2007). https://doi.org/10.1016/j.cmet.2007.09.007
- Weitzmann, M. N. & Pacifici, R. Estrogen deficiency and bone loss: an inflammatory tale. J. Clin. Invest. 116, 1186-1194 (2006). https://doi.org/10.1172/JCI28550
- Clowes, J. A., Riggs, B. L. & Khosla, S. The role of the immune system in the pathophysiology of osteoporosis. Immunol. Rev. 208, 207-227 (2005). https://doi.org/10.1111/j.0105-2896.2005.00334.x
- Pfeilschifter, J., Koditz, R., Pfohl, M. & Schatz, H. Changes in proinflammatory cytokine activity after menopause. Endocr. Rev. 23, 90-119 (2002). https://doi.org/10.1210/edrv.23.1.0456
- Vandenput, L. & Ohlsson, C. Estrogens as regulators of bone health in men. Nat. Rev. Endocrinol. 5, 437-443 (2009). https://doi.org/10.1038/nrendo.2009.112
- Francis, R. M. Androgen replacement in aging men. Calcif. Tissue Int. 69, 235-238 (2001). https://doi.org/10.1007/s00223-001-1051-9
- Finkelstein, J. S. et al. Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann. Intern Med 106, 354-361 (1987). https://doi.org/10.7326/0003-4819-106-3-
- Stepan, J. J., Lachman, M., Zverina, J., Pacovsky, V. & Baylink, D. J. Castrated men exhibit bone loss: effect of calcitonin treatment on biochemical indices of bone remodeling. J. Clin. Endocrinol. Metab. 69, 523-527 (1989). https://doi.org/10.1210/jcem-69-3-523
- Alibhai, S. M., Gogov, S. & Allibhai, Z. Long-term side effects of androgen deprivation therapy in men with non-metastatic prostate cancer: a systematic literature review. Crit. Rev. Oncol. Hematol. 60, 201-215 (2006). https://doi.org/10.1016/j.critrevonc.2006.06.006
- Baillie, S. P., Davison, C. E., Johnson, F. J. & Francis, R. M. Pathogenesis of vertebral crush fractures in men. Age Ageing 21, 139-141 (1992). https://doi.org/10.1093/ageing/21.2.139
- Gunness, M. & Orwoll, E. Early induction of alterations in cancellous and cortical bone histology after orchiectomy in mature rats. J. Bone Miner. Res. 10, 1735-1744 (1995).
- Zhang, X. S. et al. Local ex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in mice. J. Gene Med. 6, 4-15 (2004). https://doi.org/10.1002/jgm.477
- Mirsaidi, A. et al. Therapeutic potential of adipose-derived stromal cells in agerelated osteoporosis. Biomaterials 35, 7326-7335 (2014). https://doi.org/10.1016/j.biomaterials.2014.05.016
- Liu, S. et al. MSC Transplantation Improves Osteopenia via Epigenetic Regulation of Notch Signaling in Lupus. Cell. Metab. 22, 606-618 (2015). https://doi.org/10.1016/j.cmet.2015.08.018
- Chen, C. et al. Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Res. 27, 559-577 (2017). https://doi.org/10.1038/cr.2017.11
- Tan, R. et al. GAPDH is critical for superior efficacy of female bone marrowderived mesenchymal stem cells on pulmonary hypertension. Cardiovasc. Res. 100, 19-27 (2013). https://doi.org/10.1093/cvr/cvt165
- Sammour, I. et al. The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury. PLoS ONE 11, e0164269 (2016). https://doi.org/10.1371/journal.pone.0164269
Cited by
- Stem cell-based bone and dental regeneration: a view of microenvironmental modulation vol.11, pp.3, 2019, https://doi.org/10.1038/s41368-019-0060-3
- Sex, not gender. A plea for accuracy vol.51, pp.11, 2018, https://doi.org/10.1038/s12276-019-0341-0
- Defective Proliferation and Osteogenic Potential with Altered Immunoregulatory phenotype of Native Bone marrow-Multipotential Stromal Cells in Atrophic Fracture Non-Union vol.9, pp.1, 2018, https://doi.org/10.1038/s41598-019-53927-3
- Trophic effects of multiple administration of mesenchymal stem cells in children with osteogenesis imperfecta vol.11, pp.4, 2021, https://doi.org/10.1002/ctm2.385
- Bone Marrow Multipotent Mesenchymal Stromal Cells as Autologous Therapy for Osteonecrosis: Effects of Age and Underlying Causes vol.8, pp.5, 2021, https://doi.org/10.3390/bioengineering8050069