• Title/Summary/Keyword: micro forming

Search Result 358, Processing Time 0.033 seconds

Micro Forming with Hydrostatic Pressure -Hydro-Mechanical Role Punching- (정수압을 이용한 미세 성형 -Hydro-Mechanical Hole Punching-)

  • 박훈재;김승수;최태훈;김응주;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.386-390
    • /
    • 2003
  • As a trial of application of hydrostatic pressure in micro fomring, burr-free punching has been conducted by means of hydro-mechanical procedure. Even though it is in beginning stage, result of the hydro-mechanical punching is promising. Hydrostatic pressure helps delay fracture initiation and makes it possible to get clean shearing surface. Without any burr on both side of sheet, smooth holes are archived as intended. To verify the significance of hydro-mechanical punching, conventional punching is performed under similar conditions and relatively larger portion of fracture surface is detected in the punching hole. Despite the quality of sidewall is not good enough, it might be possible to make the hole shaped upright, reduce the roll-over radius and minimize the fracture surface by optimizing process parameters.

  • PDF

Development of nano/micro forming and evaluation technology of Zr-base bulk metallic glass (Zr계 벌크 비정질 합금의 미세성형 및 평가기술 개발)

  • Ok M.-R.;Suh J. Y.;Chung S. J.;Hong K. T.;Ji Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.44-47
    • /
    • 2004
  • Although bulk metallic glasses have many outstanding aspects in their chemical, mechanical or functional properties, some critical problems still hinder their wide application. The most important one is the brittle nature of them, which is the serious problem to structural application. So, to use viscous flow is now the only competent way to form bulk metallic glass. In this study, we investigated the basic nature of viscous flow of Zr-base bulk metallic glass, vitrelloy 1, in terms of process variables. The results were used to design the thermo-mechanical process composed of heating, holding, pressing, and cooling, which have unique influence on the glass transition and crystallization behavior. We adopted small load scale and dies with nano/micro patterns on them. The results were evaluated using several analytical methods.

  • PDF

Influence of Several Physicochemical Conditions on the Flocculation of Micro Stickies

  • Kim, Jong-Min;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.20-26
    • /
    • 2008
  • Behavior of micro stickies was analyzed using model micro stickies prepared with PVAc emulsion adhesive. Flocculation of micro stickies increased with temperature. Acidic state also induced greater flocculation of micro stickies since they became more unstable under these conditions. Flocculation of micro stickies increased as calcium ion concentration increased. But the presence of calcium carbonates made micro stickies dispersed indicating that calcium carbonates cause two different effects on the behavior of micro stickies. Talc increased flocculation of micro stickies because of its hydrophobic nature. Cationic polymer increased flocculation of micro stickies. Especially cationic starch has far greater effect in flocculating sticky particles by forming bridging flocculations.

Prediction of Wrinkling in Micro R2R Forming and Its Improvement (마이크로 R2R 성형에서 주름의 발생 예측과 개선)

  • Min, B.W.;Seo, W.S.;Kim, J.B.;Lee, H.J.;Lee, S.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Recently, with the merits of simplicity, ease of mass production and cost effectiveness, a roll-to-roll (R2R) forming process is tried to be employed in the manufacturing of the circuit board, barrier ribs and other electronic device. In this study, the roll-to-roll process for the forming of micro-pattern in electronic device panel is designed and analyzed. In the preliminary experiments, two major defects, i.e., crack near the dimple wall and wrinkling on outside region of dimple, are found. The study on the crack prevention is carried out in previous works by authors. In this study, the cause of wrinkling and modification of tooling to prevent the wrinkling is studied. The main cause of wrinkling is considered to be the uneven material flow along the rolling direction. To reduce or to retard the wrinkling initiation, a dummy shape on outside the pattern is introduced. From the finite element analysis results, it is shown that the dummy shape can reduce the uneven material flow significantly. Finally the effect of dimensions of the dummy shape on material flow is investigated and the optimum dimensions are found.

Hysteresis Compensating of PZT Actuator in Micro Tensile Tester Using Inverse Compensation Method

  • Lee, Hye-Jin;Kim, Seung-Soo;Lee, Nak-Kyu;Lee, Hyoung-Wook;Hwang, Jai-Hyuk;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.502-505
    • /
    • 2005
  • Researches about micro technology travel lively in these days. Such many researches are concentrated in the field of materials and a process field. But properties of micro materials should be known to give results of research developed into still more. In these various material properties, mechanical property such as tensile strength, elastic modulus, etc is the basic property. To measure mechanical properties in micro or nano scale, actuating must be very precise. PZT is a famous actuator which becomes a lot of use to measure very precise mechanical properties in micro research field. But PZT has a nonlinearity which is called as hysteresis. Not precision result is caused because of this hysteresis property in PZT actuator. Therefore feedback control method is used in many researches to prevent this hysteresis of PZT actuator. Feedback control method produce a good result in processing view, but cause a loss in a resolution view. In this paper, hysteresis is compensated by open loop control method. Hysteresis property is modeled in Mathematical function and compensated control input is constructed using inverse function of original data. Reliability of this control method can be confirmed by testing nickel thin film that is used in MEMS material broadly.

  • PDF

A study on releasing high aspect ratio micro features formed with a UV curable resin (UV경화수지의 고형상비 미세패턴 이형에 관한 연구)

  • Kwon, Ki-Hwan;Yoo, Yeong-Eun;Kim, Chang-Wan;Park, Young-Woo;Je, Tae-Jin;Choi, Doo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1833-1836
    • /
    • 2008
  • Recently as the micro surface features become higher and diverse in their shapes, the releasing of the molded features becomes more crucial for manufacturing of the micro patterned products. The higher aspect ratio of the features or more complex shape of the features results in larger releasing force, elongation or cohesive failure of the features during the releasing. Another issue would be the uniformity of the released surface features after molding, especially for applications with large area surface. The micro patterned optical film, one of typical applications for micro surface features, consists of two layers, the thermoplastic base film and the micro formed UV resin layer. Therefore two interfaces are typically involved during the forming of this micro featured film; one is between the base film and the UV resin and another is between the resin and the pattern master. To improve the releasing of the molded surface features, the adhesive characteristic was investigated at these two interfaces. A PET film was used as a base film and two UV curable resins with different surface energy were prepared for different adhesiveness. Also the two different pattern masters were employed; one is made from brass-copper alloy and fabricated with PMMA. The adhesiveness at each interface was measured for some combinations of these base film, UV resins and the masters and the effect of this adhesiveness on the releasing was investigated.

  • PDF

A Study on the Micro-deformation of Plain Weave Carbon/Epoxy Composite-Polymer Foam Sandwich Structures during Curing (평직 탄소섬유 복합재료-고분자 포움 샌드위치 구조의 성형 중 미소변형에 관한 연구)

  • Kim Yong-Soo;Chang Seung-Hwan
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.28-36
    • /
    • 2004
  • Micro-tow deformation during forming of PVC foam-fabric composite sandwich structure is investigated to find out the correlation between forming condition and material deformation. The foams used in this research are PVC foams which have 4 different densities and the fabric composite is Carbon/epoxy prepreg which is plain weave (3k) as a skin material. Tow parameters such as crimp angle and tow amplitude are measured using microscope and a proper image tool and are compared with each other. In order to find out the effect of foam deformation during forming on tow deformation the compressive tests of foams are performed in three different environmental temperatures ($25^{\circ}C$, $80{\circ}C$, $125^{\circ}C$). The microscopic observation results show that the micro tow deformations are quite different from each other with respect to the foam density and forming pressure.