• Title/Summary/Keyword: metric spaces

Search Result 469, Processing Time 0.035 seconds

SYMBOLICALLY EXPANSIVE DYNAMICAL SYSTEMS

  • Oh, Jumi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.85-90
    • /
    • 2022
  • In this article, we consider the notion of expansiveness on compact metric spaces for symbolically point of view. And we show that a homeomorphism is symbolically countably expansive if and only if it is symbolically measure expansive. Moreover, we prove that a homeomorphism is symbolically N-expansive if and only if it is symbolically measure N-expanding.

Function space formulation of the 3-noded distorted Timoshenko metric beam element

  • Manju, S.;Mukherjee, Somenath
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • The 3-noded metric Timoshenko beam element with an offset of the internal node from the element centre is used here to demonstrate the best-fit paradigm using function space formulation under locking and mesh distortion. The best-fit paradigm follows from the projection theorem describing finite element analysis which shows that the stresses computed by the displacement finite element procedure are the best approximation of the true stresses at an element level as well as global level. In this paper, closed form best-fit solutions are arrived for the 3-noded Timoshenko beam element through function space formulation by combining field consistency requirements and distortion effects for the element modelled in metric Cartesian coordinates. It is demonstrated through projection theorems how lock-free best-fit solutions are arrived even under mesh distortion by using a consistent definition for the shear strain field. It is shown how the field consistency enforced finite element solution differ from the best-fit solution by an extraneous response resulting from an additional spurious force vector. However, it can be observed that when the extraneous forces vanish fortuitously, the field consistent solution coincides with the best-fit strain solution.

ORBITAL CONTRACTION IN METRIC SPACES WITH APPLICATIONS OF FRACTIONAL DERIVATIVES

  • Haitham Qawaqneh;Waseem G. Alshanti;Mamon Abu Hammad;Roshdi Khalil
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.649-672
    • /
    • 2024
  • This paper explores the significance and implications of fixed point results related to orbital contraction as a novel form of contraction in various fields. Theoretical developments and theorems provide a solid foundation for understanding and utilizing the properties of orbital contraction, showcasing its efficacy through numerous examples and establishing stability and convergence properties. The application of orbital contraction in control systems proves valuable in designing resilient and robust control strategies, ensuring reliable performance even in the presence of disturbances and uncertainties. In the realm of financial modeling, the application of fixed point results offers valuable insights into market dynamics, enabling accurate price predictions and facilitating informed investment decisions. The practical implications of fixed point results related to orbital contraction are substantiated through empirical evidence, numerical simulations, and real-world data analysis. The ability to identify and leverage fixed points grants stability, convergence, and optimal system performance across diverse applications.

ON BOUNDED OPERATOR Qq IN WEIGHT BLOCH SPACE

  • Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.131-138
    • /
    • 2000
  • Let D be the open unit disk in the complex plane $\mathbb{C}$. For any q > 0, the operator $Q_q$ defined by $$Q_qf(z)=q\int_{D}\frac{f(\omega)}{(1-z{\bar{\omega}})^{1+q}}d{\omega},\;z{\in}D$$. maps $L^{\infty}(D)$ boundedly onto $B_q$ for each q > 0. In this paper, weighted Bloch spaces $\mathcal{B}_q$ (q > 0) are considered on the open unit ball in $\mathbb{C}^n$. In particular, we will investigate the possibility of extension of this operator to the Weighted Bloch spaces $\mathcal{B}_q$ in $\mathbb{C}^n$.

  • PDF

GENERALIZED VARIATIONAL-LIKE INEQUALITIES WITH COMPOSITELY MONOTONE MULTIFUNCTIONS

  • Ceng, Lu-Chuan;Lee, Gue-Myung;Yao, Jen-Chih
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.841-858
    • /
    • 2008
  • In this paper, we introduce two classes of generalized variational-like inequalities with compositely monotone multifunctions in Banach spaces. Using the KKM-Fan lemma and the Nadler's result, we prove the existence of solutions for generalized variational-like inequalities with compositely relaxed ${\eta}-{\alpha}$ monotone multifunctions in reflexive Banach spaces. On the other hand we also derive the solvability of generalized variational-like inequalities with compositely relaxed ${\eta}-{\alpha}$ semimonotone multi functions in arbitrary Banach spaces by virtue of the Kakutani-Fan-Glicksberg fixed-point theorem. The results presented in this paper extend and improve some earlier and recent results in the literature.

ON DUALITY OF WEIGHTED BLOCH SPACES IN ℂn

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.523-534
    • /
    • 2010
  • In this paper, we consider the weighted Bloch spaces ${\mathcal{B}}_q$(q > 0) on the open unit ball in ${\mathbb{C}}^n$. We prove a certain integral representation theorem that is used to determine the degree of growth of the functions in the space ${\mathcal{B}}_q$ for q > 0. This means that for each q > 0, the Banach dual of $L_a^1$ is ${\mathcal{B}}_q$ and the Banach dual of ${\mathcal{B}}_{q,0}$ is $L_a^1$ for each $q{\geq}1$.

DEFORMATION SPACES OF CONVEX REAL-PROJECTIVE STRUCTURES AND HYPERBOLIC AFFINE STRUCTURES

  • Darvishzadeh, Mehdi-Reza;William M.Goldman
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.625-639
    • /
    • 1996
  • A convex $RP^n$-structure on a smooth anifold M is a representation of M as a quotient of a convex domain $\Omega \subset RP^n$ by a discrete group $\Gamma$ of collineations of $RP^n$ acting properly on $\Omega$. When M is a closed surface of genus g > 1, then the equivalence classes of such structures form a moduli space $B(M)$ homeomorphic to an open cell of dimension 16(g-1) (Goldman [2]). This cell contains the Teichmuller space $T(M)$ of M and it is of interest to know what of the rich geometric structure extends to $B(M)$. In [3], a symplectic structure on $B(M)$ is defined, which extends the symplectic structure on $T(M)$ defined by the Weil-Petersson Kahler form.

  • PDF

LIPSCHITZ CONTINUOUS AND COMPACT COMPOSITION OPERATOR ACTING BETWEEN SOME WEIGHTED GENERAL HYPERBOLIC-TYPE CLASSES

  • Kamal, A.;El-Sayed Ahmed, A.;Yassen, T.I.
    • Korean Journal of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.647-662
    • /
    • 2016
  • In this paper, we study Lipschitz continuous, the boundedness and compactness of the composition operator $C_{\phi}$ acting between the general hyperbolic Bloch type-classes ${\mathcal{B}}^{\ast}_{p,{\log},{\alpha}}$ and general hyperbolic Besov-type classes $F^{\ast}_{p,{\log}}(p,q,s)$. Moreover, these classes are shown to be complete metric spaces with respect to the corresponding metrics.