• Title/Summary/Keyword: method: numerical simulations

Search Result 1,430, Processing Time 0.029 seconds

Micro-finite element and analytical investigations of seismic dampers with steel ring plates

  • Rousta, Ali Mohammad;Azandariani, Mojtaba Gorji
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.565-579
    • /
    • 2022
  • This study investigated the yielding capacity and performance of seismic dampers constructed with steel ring plates using numerical and analytical approaches. This study aims to provide an analytical relationship for estimating the yielding capacity and initial stiffness of steel ring dampers. Using plastic analysis and considering the mechanism of plastic hinge formation, a relation has been obtained for estimating the yielding capacity of steel ring dampers. Extensive parametric studies have been carried out using a nonlinear finite element method to examine the accuracy of the obtained analytical relationships. The parametric studies include investigating the influence of the length, thickness, and diameter of the ring of steel ring dampers. To this end, comprehensive verification studies are performed by comparing the numerical predictions with several reported experimental results to demonstrate the numerical method's reliability and accuracy. Comparison is made between the hysteresis curves, and failure modes predicted numerically or obtained/observed experimentally. Good agreement is observed between the numerical simulations and the analytical predictions for the yielding force and initial stiffness. The difference between the numerical models' ultimate tensile and compressive capacities was observed that average of about 22%, which stems from the performance of the ring-dampers in the tensile and compression zones. The results show that the steel ring-dampers are exhibited high energy dissipation capacity and ductility. The ductility parameters for steel ring-damper between values were 7.5 to 4.1.

Prediction of chloride ingress into saturated concrete on the basis of a multi-species model by numerical calculations

  • Nguyen, T.Q.;Baroghel-Bouny, V.;Dangla, P.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.401-422
    • /
    • 2006
  • A multi-species model based on the Nernst-Planck equation has been developed by using a finite volume method. The model makes it possible to simulate transport due to an electrical field or by diffusion and to predict chloride penetration through water saturated concrete. The model is used in this paper to assess and analyse chloride diffusion coefficients and chloride binding isotherms. The experimental assessment of the effective chloride diffusion coefficient consists in measuring the chloride penetration depth by using a colorimetric method. The effective diffusion coefficient determined numerically allows to correctly reproduce the chloride penetration depth measured experimentally. Then, a new approach for the determination of chloride binding, based on non-steady state diffusion tests, is proposed. The binding isotherm is identified by a numerical inverse method from a single experimental total chloride concentration profile obtained at a given exposure time and from Freundlich's formula. In order to determine the initial pore solution composition (required as initial conditions for the model), the method of Taylor that describes the release of alkalis from cement and alkali sorption by the hydration products is used here. Finally, with these input data, prediction of total and water-soluble chloride concentration profiles has been performed. The method is validated by comparing the results of numerical simulations to experimental results obtained on various types of concretes and under different exposure conditions.

Finite Element Analysis of Fluid Flows with Moving Boundary

  • Cha, Kyung-Se;Park, Jong-Wook;Park, Chan-Guk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.683-695
    • /
    • 2002
  • The objective of the present study is to analyze the fluid flow with moving boundary using a finite element method. The algorithm uses a fractional step approach that can be used to solve low-speed flow with large density changes due to intense temperature gradients. The explicit Lax-Wendroff scheme is applied to nonlinear convective terms in the momentum equations to prevent checkerboard pressure oscillations. The ALE (Arbitrary Lagrangian Eulerian) method is adopted for moving grids. The numerical algorithm in the present study is validated for two-dimensional unsteady flow in a driven cavity and a natural convection problem. To extend the present numerical method to engine simulations, a piston-driven intake flow with moving boundary is also simulated. The density, temperature and axial velocity profiles are calculated for the three-dimensional unsteady piston-driven intake flow with density changes due to high inlet fluid temperatures using the present algorithm. The calculated results are in good agreement with other numerical and experimental ones.

Numerical Analysis of Impact Force Transfer Characteristics of Court Sport Shoes to Surface Condition (지면조건에 따른 코트 스포츠화 착지 충격력의 전달특성 수치해석)

  • 류성헌;최주형;김성호;부진후;조진래
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1974-1981
    • /
    • 2004
  • This paper is concerned with the numerical investigation of the transfer characteristics of the landing impact force exerted on court sport shoes to the sport surface condition. The reaction force occurred by the impact between court sport shoes and sport surface is absorbed by shoes to some extent, but the remaining impact force is to transfer the human body from the sole of a foot. We consider four surface conditions, asphalt, urethane, clay and wood court surfaces. For the dynamic response analysis, we construct a coupled leg-shoes FEM model and create the multi-layered composite surface model. The numerical simulations are performed by an explicit nonlinear finite element method. Through the numerical experiments, we examine the transfer characteristics of the landing impact force to the surface condition.

Static aerodynamic force coefficients for an arch bridge girder with two cross sections

  • Guo, Jian;Zhu, Minjun
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.209-216
    • /
    • 2020
  • Aiming at the wind-resistant design of a sea-crossing arch bridge, the static aerodynamic coefficients of its girder (composed of stretches of π-shaped cross-section and box cross-section) were studied by using computational fluid dynamics (CFD) numerical simulation and wind tunnel test. Based on the comparison between numerical simulation, wind tunnel test and specification recommendation, a combined calculation method for the horizontal force coefficient of intermediate and small span bridges is proposed. The results show that the two-dimensional CFD numerical simulations of the individual cross sections are sufficient to meet the accuracy requirements of engineering practice.

Dynamics of a bridge beam under a stream of moving elements -Part 1 - Modelling and numerical integration

  • Podworna, M.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.283-300
    • /
    • 2011
  • A new conception of fundamental tasks in dynamics of the bridge-track-train systems (BTT), with the aim to evaluate moving load's models adequacy, has been developed. The 2D physical models of BTT systems, corresponding to the fundamental tasks, have been worked out taking into account one-way constraints between the moving unsprung masses and the track. A method for deriving the implicit equations of motion, governing vibrations of BTT systems' models, as well as algorithms for numerical integration of these equations, leading to the solutions of high accuracy and relatively short times of simulations, have been also developed. The derived equations and formulated algorithms constitute the basis for numerical simulation of vibrations of the considered systems.

Numerical Analysis of Solid Propellant Ignition ~Numerical Formulation Assessment~

  • Shimada, Toru;Novozhilov, Boris V.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.528-531
    • /
    • 2004
  • For a simple one-dimensional ignition problem a mathematical model is described to investigate the difficulties in numerical simulations. Some computation results are obtained and comparison is made with analytical solution. Discussions are made on topics such as 1) coordinate transformation, 2) gas-phase and solid-phase analysis; (divergence form of the governing system, a finite-volume discretization, implicit time integration, upwind split flux, spatial accuracy improvement are described. Mass, reagent mass, and energy conservations are solved.), and 3) method to determine quantities on the burning surface (matching). Results obtained for small values of the non-dimensional pressure show a steady-combustion and good agreement with the analytical solution. Numerical instability appeared for larger values of the pressure, discussion on the cause of the problem is made. This effort is a part of a study of flame spread phenomena on solid propellant surface.

  • PDF

NUMERICAL COMPARISON OF WENO TYPE SCHEMES TO THE SIMULATIONS OF THIN FILMS

  • Kang, Myungjoo;Kim, Chang Ho;Ha, Youngsoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.193-204
    • /
    • 2012
  • This paper is comparing numerical schemes for a differential equation with convection and fourth-order diffusion. Our model equation is $h_t+(h^2-h^3)_x=-(h^3h_{xxx})_x$, which arises in the context of thin film flow driven the competing effects of an induced surface tension gradient and gravity. These films arise in thin coating flows and are of great technical and scientific interest. Here we focus on the several numerical methods to apply the model equation and the comparison and analysis of the numerical results. The convection terms are treated with well known WENO methods and the diffusion term is treated implicitly. The diffusion and convection schemes are combined using a fractional step-splitting method.

Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates (연강 판재에 대한 연강 구의 고속경사충돌 수치해석)

  • Yu, Yo-Han;Jang, Sun-Nam;Jeong, Dong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

Numerical investigations on stability evaluation of a jointed rock slope during excavation using an optimized DDARF method

  • Li, Yong;Zhou, Hao;Dong, Zhenxing;Zhu, Weishen;Li, Shucai;Wang, Shugang
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.271-281
    • /
    • 2018
  • A jointed rock slope stability evaluation was simulated by a discontinuous deformation analysis numerical method to investigate the process and safety factors for different crack distributions and different overloading situations. An optimized method using Discontinuous Deformation Analysis for Rock Failure (DDARF) is presented to perform numerical investigations on the jointed rock slope stability evaluation of the Dagangshan hydropower station. During the pre-processing of establishing the numerical model, an integrated software system including AutoCAD, Screen Capture, and Excel is adopted to facilitate the implementation of the numerical model with random joint network. These optimizations during the pre-processing stage of DDARF can remarkably improve the simulation efficiency, making it possible for complex model calculation. In the numerical investigations on the jointed rock slope stability evaluations using the optimized DDARF, three calculation schemes have been taken into account in the numerical model: (I) no joint; (II) two sets of regular parallel joints; and (III) multiple sets of random joints. This model is capable of replicating the entire processes including crack initiation, propagation, formation of shear zones, and local failures, and thus is able to provide constructive suggestions to supporting schemes for the slope. Meanwhile, the overloading numerical simulations under the same three schemes have also been performed. Overloading safety factors of the three schemes are 5.68, 2.42 and 1.39, respectively, which are obtained by analyzing the displacement evolutions of key monitoring points during overloading.