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Abstract

For a simple one-dimensional ignition problem a
mathematical model is described to investigate the
difficulties in numerical simulations. Some
computation results are obtained and comparison is
made with analytical solution. Discussions are made
on topics such as 1) coordinate transformation, 2) gas-
phase and solid-phase analysis; (divergence form of
the governing system, a finite-volume discretization,
implicit time integration, upwind split flux, spatial
accuracy improvement are described. Mass, reagent
mass, and energy conservations are solved.), and 3)
method to determine quantities on the burning surface
(matching). Results obtained for small values of the
non-dimensional pressure show a steady-combustion
and good agreement with the analytical solution.
Numerical instability appeared for larger values of the
pressure, discussion on the cause of the problem is
made. This effort is a part of a study of flame spread
phenomena on solid propellant surface.

Introduction

The phenomenon of flame spread is seen during
the ignition period. (Fig.1) To understand flame
spread over solid propellant is very important to
promote advanced solid propulsion, and further more
it will deepen the understanding of the ignition,
erosive burning, and unsteady combustion, and so on.
It is at the same time very difficult since it is
essentially  multi-dimensional and  unsteady
phenomenon.

A system of governing equations and its non-
dimensional form are prepared to describe a
mathematical model of two-dimensional unsteady
combustion of solid propellant in order to investigate
flame spread. While this effort is in progress, we need
to consider several things to overcome before we
perform a real flame spread simulation. There are
various challenging aspects, mainly related to the

essential multi-dimensionality and unsteadiness of the
flame spread phenomena. Other difficulties are in the
numerical procedures of dealing with the phase-
interface. There are basically two types of methods for
it, namely, “fitting” and “capturing” (Fig.2).

Capturing

Fitting

Fig. 2 Types of methods of interface handling

Before studying multi-dimensional problems, it is
necessary to check numerical method in one-
dimensional problem where some theoretical solutions
and analysis exist. A flame spread problem can be a
problem of ignition when it is reduced to one-
dimension (Fig. 3). In this report, for a simple one-
dimensional ignition problem, a numerical model for
“fitting” is described to investigate the difficulties in
numerical simulations.
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Fig. 3 One-dimensional ignition problem

One-dimensional Ignition Problem

In the relating paper" a mathematical formulation
will be given for one-dimensional ignition problem
shown in Fig.4.
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Fig. 4 Dimensional description of one-dimensional

ignition problem

The functions T,(y,t) -

temperature, T(y,) - gas phase temperature, ¥(y,?)
- reagent mass fraction in the gas phase, v(y,) -

condensed phase

gas velocity, and M(f)= —%—’- - propellant burning

rate should be found using the governing equations
for the condensed phase and the gas phase. The
detailed description of the governing equations and
their non-dimensionalization shall be presented in
Ref.1.

The normalized space and time coordinate system
(7,7) is transformed to the coordinate moving with

the burning surface

{r'=t
n'=n-n,)

d d d
=l A tHEAS
&\, ol o,
il =il
onl, on'l.

dn_\‘

where u(r)= oy is the propellant burning rate.

Condensed phase : —w0 <7 <7,(r)
20, _o%,
EREE
Gas phase : 7,(r)<n<w

,,_6_(1)+_6_(z)=0 Py _Z
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where

W(r.0)=0,

w(v,8)= ngexp[sg(—;—-%H ; 6>6, +¢

A

0<6, +¢

The normalized functions are 6_(,1) - condensed
phase temperature, 8(n.7) - gas phase temperature,
Y(n,7) - reagent mass fraction in the gas phase, and
u(n,7) - gas velocity. It is assumed that the pressure

z is constant.
The boundary conditions are
n—o-x:0 =6,

W _g 2

on on
The matching conditions at the burning surface are
Temperature continuity : 8, = 6

n—=>o:

Heat balance : %, _ beﬁ —q,ult)
on on
Mass balance : b8u(t) = ou(r)+u
Reagent balance : b60u(r) = aYu(r)+uY - b6’ Z—Y
n

Evaporation condition : ¥ = lexp[ax(l - %H
z

The initial conditions are
'1: (0)= 0 2 Hc ("’0) = ea 3 0(’7’0) = 6a ’
Y(n,0)=Y,, u(n0)=0, u(0)=0

where Y, =-1—exp[€,(l —EI_J] .

Ignition boundary condition at #7=#,; 0<7<r,
can be written as below.

00 o0
-— =4(v)
on n on "
g at 0<7<7
9()= {0 at t>r1,

Numerical Procedure
Gas Phase
It is convenient to employ the divergence form
when we construct a finite-volume discretization.

%+%(f—rv)=s, 0<y <o (1
] (u+au)/6
q=|oY/0|, f={(u+ou)Y/0]|,
o u+ay
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f, =|b*90v/oy' |, S=|-Ww(¥,0)/0
b*056/on' q,W(v,0)/0

Divide the #' -domain, 0< 5 <n,,, . into finite
volume (length) cells. Say the total number of cell
boundaries is N, . We have (N e ~1) cells over the
domain. Each cell has width of Az, . The values of
Ay for i=1,--,N, —1 may vary. The value of 7,
should be large enough for the far field boundary
condition can be applied. The cell widths are given in
the present calculation as A, = Arp{(l+a¥" , where o
is small positive constant determined from the

N -1
condition, 7, = zAm‘ . The smallest cell width

=}
An, occurs adjacent to the burning surface. The
location of the interface of consecutive cells, i -th and
(i +1)-th is denoted as 7, .

In order to get algebraic equations from the partial
differential equations, we apply the finite-volume
method. First, we integrate the governing equations,
Eq.(1) over the i -th cell.

ﬂl’ﬂ/}

Mgz Mey2
of -f
[ 1) gy = Jsay
H_ya oy a" v
Define cell-averaged quantities such as
g2 N2

faan [san
q =2t and S, ="

An; An,

Then we get ordinary differential equations for the
i-cell.

d(-li ' < '
';;,"A’lr = -(fi+l/2 - t'r-t/z ) + (fvm/z - fv,-_yz )+ S,An,
where f,,, denotes values of f at the cell interface
location 7,,,, . This equation is solved at each cell by

time dependent fashion. An implicit time integration
scheme is employed.

ae [ (Y _p (Y _(3Y a0 lagr
[‘*Er? {”~'(7a;1 (%] -F) “’f'”“‘ @
A " _ s
= -Zt’;’,-[‘ (fnvz - f/—vz)-f(fv,,,/z - fw-vz)* Sy ]

We know that ¢ is constant and, if we write
Ag = [A‘q"') Ag? Aci(”]r , A7® =0. So, we can
reduce the coefficient matrices to (2x2) size. The
reduced matrices can be written as follows.

_a—{x:y,u(u/a)i)y-f(u/a]l ?LF
" Joq

I,
oq 2

u
e+ —|
[

o g 4
a8 _ w(,e| 0 0
oq o0y g ¥ -0}

The equations for both ends, simply explicit
boundary conditions are applied, namely,

5" -2, =0

The mass conservation equation creates tri-
diagonal system and can be solved efficiently, if gas
velocities are given.

The flux-term of right-hand side can be calculated
using upwind flux-splitting. The left-side and right-
side values at the cell-inferface are re-constructed
from cell-averaged quantities. If we apply linear
distribution within each cell, then 2™-order scheme is
obtained. If we apply parabolic distribution within
each cell, then 3"-order scheme is obtained.

To preserve the monotonic nature of the solution,
it is sometimes necessary to apply a limiter function
in the high-order reconstruction of cell-interface
values. That is we should not introduce artificial local
extrema by the above extrapolation procedure.

Similarly the reagent mass conservation equation
can be solved.

The energy equation can be written, using mass
conservation equation, at every time period as below.

_fmlm/: _,,f(S)lH/2 + _fy(s)ll_v2 +§<3)ll Ay =0

1+1/2

Therefore, after 8™ and ¥™*' are determined for
i=1,...,N, ~1, the gas velocity u/, canbe
obtained by the following equation.
ael _m;/lz +_b_2[ 0:311- 0’"“2 . Qni_ 0’,:,;.2}
- 2 An,y, An,_y,

U [5 77 M

ng(K’H’I ,0in+l )A'I:
+ 6-’”]
This equation determines the value of gas velocity u

at each cell interface by space-marching fashion, if we
can specify the gas velocity at the burning surface,

namely ufj;' . We denote itas u, .

Next, therefore, how the burning surface values
are determined at each time period is described.

Burning-surface values

We assume that variation of the temperatures in
both adjacent cells to the burning surface can be well-
approximated by linear function because the cell
spacing at the burning surface is small enough for the
approximation. 6, is the burning surface temperature

and Y, can be evaluated by this temperature.

From the definition of cell-averaged quantities, we
have
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acAn;N‘_l +a,An + 2§‘NL_| = 25,
From matching conditions
2bz{- exple, )+ exple, /6, )Yz}
{exple, )~ exple, /6, )z}an,
From above three equations, we obtain the following
relation.
ban,, 6,

ac =b00ag _:uqs H=

bq, Y, ~1)zAn. m
Ay )zl Merer +An; ~bAT; (qx+9.)

exp{e; (1 - 50—)} -z
_An;é-cN,—l =0

By solving the above equation numerically we can
determine the value of 8, . From 6, , all the rest
variables at the burning surface are determined. The
values of gradients at the burning surface are
specified in the solution process of the governing
equations.

+6,

Solid-Phase

The temperature of the solid propellant is solved
using similar numerical procedure. The flux term
(temperature at cell interface) in the right-hand side is
evaluated similarly with the gas-mass conservation
equation. The boundary conditions are implied
explicitly.

Results
Parameter values

The following values are used for the constants;
6,=07, q,=143, q,=4.12, ¢ =128,

g,=339, 0,=10", b=10", £=107

As regards to igniter parameters, they should be
chosen so that only to ignite the propellant. For
example, 7, =10, g=1 and r, should be large
enough for ignition. At t — oo the buming regime is
steady-state one with x4 = Const .

Results obtained for small values of the non-
dimensional pressure, z=1 , show a steady-
combustion. In Fig.5, the temperature distribution in
steady state is shown. The time history of the values
at the burning surface is shown in Fig.6.

As is discussed in Ref.1, in the approximation of
an infinitely thin gas-phase reaction zone, the non-
dimensional burning rate in the steady-state regime is
u=1. Calculations that were naturally carried out
without the assumption of infinitely thin reaction zone
showed that 4 to a high accuracy does not depend on

pressure. However, the value of u depends on the
activation energy of the gas-phase reaction. For
g, =33.9, the value u=0.856 has been obtained.
This value is in good agreement with the present
unsteady computational results.

For other pressure values, present solution showed
numerical instability. Detailed analyses for the
stability problem will be given in Ref.1

Summary

In order to investigate numerical problems in solving
flame spread, one-dimensional ignition problem is
considered as a test bed. It is found that the present
numerical model can give basically correct values of
the burning surface speed, but at the same time have
shown difficulties as regards to the numerical
instability. Further improvement is necessary.
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Fig.5 Temperature Distribution in Steady
State, z=1.0
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