• Title/Summary/Keyword: metal sulfide

Search Result 213, Processing Time 0.027 seconds

Selective Oxidation of Hydrogen Sulfide Containing Ammonia and Water Using Fe2O3/SiO2 Catalyst (Fe2O3/SiO2 촉매 상에서 물과 암모니아가 함께 존재하는 황화수소의 선택적 산화 반응)

  • Kim, Moon-Il;Lee, Gu-Hwa;Chun, Sung-Woo;Park, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.398-402
    • /
    • 2012
  • The catalytic performance of some metal oxides in the vapor phase selective oxidation of $H_2S$ in the stream containing ammonia and water was investigated. Among the catalysts tested $Fe_2O_3/SiO_2$ was the most promising catalyst for practical application. It showed higher than 90% $H_2S$ conversion and very small amount of $SO_2$ emission over a temperature range of $240{\sim}280^{\circ}C$. The effects of reaction temperature, $O_2/H_2S$ ratio, amount of ammonia and water vapor on the catalytic activity of $Fe_2O_3/SiO_2$ were discussed to better understand the reaction mechanism. The $H_2S$ conversion showed a maximum at $260^{\circ}C$ and it decreased with increasing temperature over $280^{\circ}C$. With an increase of $O_2/H_2S$ ratio from 0.5 to 4, the conversion was slightly increased, but the selectivity to elemental sulfur was remarkably decreased. The increase of ammonia amount favored the conversion and the selectivity to elemental sulfur with a decrease in $SO_2$ production. The presence of water vapor decreased both the activity and the selectivity to sulfur, but increased the ATS selectivity.

A Scientific Analysis of Gold Threads Used in Donggungbi-Wonsam(Ceremonial Robe Worn by a Crown Princess, National Folklore Cultural Heritage No.48) (동궁비 원삼에 사용된 금사의 과학적 분석)

  • Lee, Jang-Jon;An, Boyeon;Han, Kiok;Lee, Ryangmi;Yoo, Ji Hyun;Yu, Ji A
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.525-535
    • /
    • 2021
  • This study identified material properties through scientific analysis on Jikgeumdan(satin with gold threads) from Donggungbi-Wonsam and the gold threads used in the embroidery. The Donggungbi-Wonsam's base of gold threads were estimated to have used mulberry fiber's Korean paper(Hanji) because non-wood-based fibers were observed. The X-ray spectrometer showed that the Tongsuseulan of Donggungbi-Wonsam was a flat gold thread of pure gold and Jikgeumdan of flat silver thread of its Saekdong and Hansam. High sulfur levels were detected in the flat silver thread, which appeared to have formed silver sulfide by either manufacturing process using sulfur or conservation environment. he dragon insignia's embroidery is also described as two types twisted gold threads; pure gold and alloying-gold and silver. while dragon insignia's border line is decorated with a twisted gold thread of pure gold. In particular, it was investigated that adhesives such as an animal glue, a protein-based compound by gas chromatography mass spectrometry. Additionally, XRF and Raman spectroscopy analysis on the mixture substances between the metal surface and the base paper of gold threads identified talc and quartz in the gold threads and Seokganju(hematite) in the flat silver threads.

Mineralogical and Geochemical Studies on the Daum Vent Field, Central Indian Ridge (인도양 중앙해령 Daum 열수분출대의 광물·지구화학적 연구)

  • Ryoung Gyun Kim;Sun Ki Choi;Jonguk Kim;Sang Joon Pak;Wonnyon Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.765-779
    • /
    • 2023
  • The Daum Vent Field (DVF) was newly discovered in the Central Indian Ridge during the hydrothermal expedition by the Korea Institute of Ocean Science & Technology (KIOST) in 2021. In this paper, we describe the detailed mineralogy and geochemistry of hydrothermal chimney and mound to understand the nature of hydrothermal mineralization in the DVF. The mineral assemblages (pyrite±sphalerite±chalcopyrite) of dominant sulfides, FeS contents (mostly <20 mole %) of sphalerite, and (Cu+Zn)/Fe values (0.001-0.22) of bulk compositions indicate that the DVF has an strong affinity with basaltic-hosted seafloor massive sulfide (SMS) deposit along the oceanic ridge. Combined with the predominance of colloform and/or dendritic-textured pyrite and relatively Fe-poor sphalerite in chimneys, the fluid-temperature dependency of trace element systematics (Co, Mn, and Tl) between chimney and mound indicates that the formation of mound was controlled by relatively reducing and high-temperature fluids compared to chimney. The δ34S values (+8.31 to +10.52‰) of pyrite reflect that sulfur and metals were mainly leached from the associated basement rocks (50.6-61.3%) with a contribution from reduced seawater sulfur (38.7-49.4%). This suggests that the fluid-rock interaction, with little effect of magmatic volatile influx, is an important metal source for the sulfide mineralization in the DVF.

Relative Influence of Sediments, Food and Dissolved Sources on Ag Bioaccumulation in the Amphipod Leptocheirus plumulosus (오염된 퇴적물로부터 해양저서 단각류 Leptocheirus plumulosus의 은(Ag)축적에서 흡수경로의 상대적 기여도 평가)

  • Yoo, Hoon;Lee, In-Tae;Lee, Byeong-Gweon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.87-93
    • /
    • 2002
  • A amphipod, Leptocheirus plumulosus was exposed to Ag contaminated sediments to evaluate relative importance of various uptake routes (sediment, porewater, supplementary food) for Ag bioaccumulation in sediment-dwelling marine invertebrates. Additionally, influence of AVS (acid-volatile sulfide) on the partitioning of Ag to porewater and on the Ag bioavailability was determined to evaluate the utility of AVS criteria for the management of metal contaminated sediment. The experimental sediments were spiked with 4 levels of Ag (0.1-3.3 ${\mu}$mol Ag/g) and AVS concentrations were manipulated to 40 or <0.5 ${\mu}$mol/g, then equilibrated for >2 months to allow pore water/particulate distributions similar to nature. A L. plumulosus was incubated in the contaminated sediments with overlying water for 35d. During the exposure, the amphipods was fed with supplementary food ($TetraMin^{(R)}$) with or without Ag contamination. Following exposure, tissue Ag in L. plumulosus was strongly correlated with the weak acid extractable Ag in sediments ($r^{2}$=0.87, p<0.001). The ratio of AVS to Ag-SEM (Ag extracted simulaneouls with AVS) had a strong influence on porewater Ag concentration, consistent with previous studies. However, Ag bioaccumulation in L. plumulosus was not influenced by AVS concentrations. The amphipods fed Ag contaminated food took up ${\sim}$ 1.8 X Ag accumulated by the amphipods fed uncontaminated supplementary diet. The result suggests that the benthic invertebrates exposed to metal contaminated sediments would accumulate metals largely via ingestion of contaminated sediments and food, with minor contribution from dissolved sources of porewater and overlying water.

Geochemistry of Stable Isotope and Mineralization Age of Magnetite Deposits from the Janggun Mine, Korea (장군광산(將軍鑛山) 자철광상(磁鐵鑛床)의 광화시기(鑛化時期) 및 안정동위원소(安定同位元素) 지화학(地化學))

  • Lee, Hyun Koo;Lee, Chan Hee;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • The Janggun magnetite deposits occur as the lens-shaped magnesian skarn, magnetite and base-metal sulfide orebodies developed in the Cambrian Janggun Limestone Formation. The K-Ar age of alteration sericite indicates that the mineralization took place during late Cretaceous age (107 to 70 Ma). The ore deposition is divided into two stages as a early skarn and late hydrothermal stage. Mineralogy of skara stage (107 Ma) consists of iron oxide, base-metal sulfides, Mg-Fe carbonates and some Mg- and Ca-skarn minerals, and those of the hydrothermal stage (70 Ma) is deposited base-metal sulfides, some Sb- and Sn-sulfosalts, and native bismuth. Based on mineral assemblages, chemical compositions and thermodynamic considerations, the formation temperature, $-logfs_2$, $-logfo_2$ and pH of ore fluids progressively decreased and/or increased with time from skarn stage (433 to $345^{\circ}C$, 8.8 to 9.9 atm, 29.4 to 31.6 atm, and 6.1 to 7.2) to hydrothermal stage (245 to $315^{\circ}C$, 11.2 to 12.3 atm, 33.6 to 35.4 atm, and 7.3 to 7.8). The ${\delta}^{34}S$ values of sulfides have a wide range between 3.2 to 11.6‰. The calculated ${\delta}^{34}S_{H_2S}$ values of ore fluids are relatively homo-geneous as 2.9 to 5.4‰ (skam stage) and 8.7 to 13.5‰ (hydrothermal stage), which are a deep-seated igneous source of sulfur indicates progressive increasing due to the mixing of oxidized sedimentary sulfur with increasing paragenetic time. The ${\delta}^{13}C$ values of carbonates in ores range from -4.6 to -2.5‰. Oxygen and hydrogen isotope data revealed that the ${\delta}^{38}O_{H_2O}$ and ${\delta}D$ values of ore fluids decreased gradually with time from 14.7 to 1.8‰ and -85 to -73‰ (skarn stage), and from 11.1 to -0.2‰ and -87 to -80‰ (hydrothermal stage), respectively. This indicates that magmatic water was dominant during the early skarn mineralization but was progressively replaced by meteoric water during the later hydrothermal replacement.

  • PDF

Fractionation and Availability of Heavy Metals in Paddy Soils near Abandoned Mining Areas (광산인근 논토양의 중금속 분획화 및 유효도)

  • Jung, Goo-Bok;Kim, Won-Il;Ryu, In-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.319-323
    • /
    • 2000
  • This study was conducted to compare fractionations and availability of heavy metal in paddy soils near five abandoned mining areas. The sequential extraction procedure was used to fractionate the heavy metals in soils into the designated from water $soluble(H_2O)$, $exchangeable(0.5M\;KNO_3)$, organically bound(0.5M NaOH), $oxide/carbonate(0.05M\;Na_2-EDTA)$, and $sulfide/residual(4M\;HNO_3)$. EDTA and $HNO_3$ extractable of Cd, Pb, and Zn, and NaOH and $HNO_3$, extractable of Cu were predominant chemical forms. The ratio of $H_2O+KNO_3$ extractable of Cd, Zn, Cu, and Pb were 25.1, 8.7, 4.0, and 0.4%, respectively. The ratio of $H_2O+KNO_3$ extractable heavy metal were negatively correlated with soil pH, while $EDTA+HNO_3$ extractable heavy metal were positively correlated. The most consistent distribution patterns were found when the soil samples were grouped according to their total contents. Specially, the ratio of $H_2O+KNO_3$ extractable heavy metal were higher as total contents of heavy metal were increased. The ratio of $H_2O+KNO_3$ extractable heavy metal(Cd 1.06, Cu 0.15, Pb 0.01, and Zn 0.05%) were lower at the high soil pH than those(Cd 31.31, Cu 4.06, Pb 1.75, and Zn 10.16%) at the low level. Compared to other chemical forms, the degree of contribution for $KNO_3$ extractable form to the Cd uptake to brown rice was high, whereas that for EDTA and $HNO_3$ extractable forms were high to the Zn.

  • PDF

Mobility of Transition Metals by Change of Redox Condition in Dump Tailings from the Dukum Mine, Korea (덕음광산 광미의 산화${\cdot}$환원 조건에 따른 전이원소의 이동성)

  • 문용희;문희수;박영석;문지원;송윤구;이종천
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.285-293
    • /
    • 2003
  • Tailings of Dukum mine in the vadose and saturated zone were investigated to reveal the mobility of metal elements and the condition of mineralogical solubility according to redox environments throughout the geochemical analysis, thermodynamic modelling, and mineralogical study for solid-samples and water samples(vadose zone; distilled water: tailings=5 : 1 reacted, saturated zone; pore-water extracted). In the vadose zone, sulfide oxidation has generated low-pH(2.72∼6.91) condition and high concentration levels of S $O_4$$^{2-}$(561∼1430mg/L) and other metals(Zn : 0.12∼l57 mg/L, Pb : 0.06∼0.83 mg/L, Cd : 0.06∼l.35 mg/L). Jarosite$(KFe_3(SO_4)_2(OH)_6)$ and gypsum$(CaSO_4{\cdot}2H_2O$) were identified on XRD patterns and thermodynamics modelling. In the saturated zone, concentration of metal ions decreased because pH values were neutral(7.25∼8.10). But Fe and Mn susceptible to redox potential increased by low-pe values(7.40∼3.40) as the depth increased. Rhodochrosite$(MnCO_3)$ identified by XRD and thermodynamics modelling suggested that $Mn^{4+}$ or $Mn^{3+}$ was reduced to $Mn^{2+}$. Along pH conditions, concentrations of dissolved metal ions has been most abundant in vadose zone throughout borehole samples. It was observed that pH had more effect on metal solubilities than redox potential. How-ever, the release of co-precipitated heavy metals following the dissolution of Fe-Mn oxyhydroxides could be the mechanism by which reduced condition affected heavy metal solubility considering the decrease of pe as depth increased in tile saturated zone.

Au-Ag-Te Mineralization by Boiling and Dilution of Meteoric Ground-water in the Tongyeong Epithermal sold System, Korea: Implications from Reaction Path Modeling (광화유체의 비등과 희석에 의한 통영 천열수계 Au-Ag-Te 장화작용에 대한 반응경로 모델링)

  • Maeng-Eon Park;Kyu-Youl Sung
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.507-522
    • /
    • 2001
  • At the Tongyeong mine, quartz, rhodochrosite (kutnahorite), muscovite, illite, pyrite, galena, chalcopyrite. sphalerite, acanthite, and hessite are the principal vein minerals. They were deposited under epithermal conditions in two stages. Ore mineral assemblages and associated gangue phases in stage can be clearly divided into two general associations: an early cycle (band) that appeared with introduction of most of the sulfides and electrum, and a later cycle in which base metal and carbonate-bearing assemblages (mostly rhodochrosite) became dominant. Tellurides and some electrum occur as small rounded grains within subhedral-to euhedral pyrite or anhedral galena in stageII. Sulfide mineralization is zoned from pyrite to galena and sphalerite. We have used computer modeling to simulate formation of four stages of vein genesis. The reaction of a single fluid with andesite host rock at 28$0^{\circ}C$, isobaric cooling of a single fluid from 26$0^{\circ}C$ to 12$0^{\circ}C$, and boiling and mixing of a fluid with both decreasing pressure and temperature were studied using the CHILLER program. Calculations show that the precipitation of alteration minerals is due to fluid-andesite interaction as temperature drops. Speciation calculations confirm that the hydrothermal fluids with moderately high salinities and pH 5.7 (acid), were capable of transporting significant quantities of base metals. The abundance of gold in fluid depends critically on the ratio of total base metals and iron to sulfide in the aqueous phase because gold is transported as an Au(HS)$_2$- complex, which is sensitive to sulfide activity. Modeling results for Tongyeong mineralization show strong influence of shallow hydrogenic processes such as boiling and fluid mixing. The variable handing in stageII mineralization is best explained by maltiple boilings of hydrothermal fluid followed by lateral mixing of the fluid with overlying diluted, steam-heated ground water. The degree of similarity of calculated mineral assemblages and observed electrum composition and field relationships shows the utility of the numerical simulation method in identifying chemical processes that accompany boiling and mixing in Te-bearing Au-Ag system. This has been applied in models to narrow the search area for epithermal ores.

  • PDF

Mesothermal Gold-Silver Mineralization at the Bodeok Mine, Boseong Area : A Fluid Inclusion and Stable Isotope Study (전남(全南) 보성지역(寶城地域) 보덕광산(寶德鑛山)의 심부(深部) 중온형(中溫型) 금(金)-은(銀) 광화작용(鑛化作用): 유체포유물(流體包有物) 및 안정동위원소(安定同位元素) 연구(硏究))

  • So, Chil-Sup;Yun, Seong-Taek;Kim, Se-Hyun;Youm, Seung-Jun;Heo, Chul-Ho;Choi, Seon-Gyu
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.433-444
    • /
    • 1993
  • Electrum (32~73 atom. % Ag)-sulfide mineralization of the Bodeok mine in the Boseong area was deposited in two stages of mineralogically simple, massive quartz veins that fill the fractures along fault shear zones in Precambrian gneiss. Radiometric dating indicates that mineralization is Late Jurassic age ($155.9{\pm}2.3$ Ma). Fluid inclusion data show that ore mineralization was formed from $H_2O-CO_2$ fluids with variable $CO_2$ contents ($X_{CO_2}=0.0$ to 0.7) and low salinities (0.0 to 7.4 wt. % eq. NaCl) at temperatures between $200^{\circ}$ and $370^{\circ}C$. Evidence of fluid unmixing ($CO_2$ effervescence) indicates pressures up to 1 kbar. Gold-silver deposition occurred later than base-metal sulfide deposition, at temperatures near $250^{\circ}C$ and was probably a result of cooling and decreasing sulfur activity caused by sulfide precipitation and/or $H_2S$ loss (through fluid unmixing). Calculated sulfur isotope compositions of ore fluids (${\delta}^{34}S_{{\Sigma}S}=1.7$ to 3.3‰) indicate an igneous source of sulfur in hydrothermal fluids. Measured and calculated O and H isotope compositions of ore fluids (${\delta}^{18}O_{water}=4.8$ to 7.2‰, ${\delta}D_{water}=-73$ to -76‰) indicate that mesothermal auriferous fluids at Bodeok were likely mixtures of $H_2O-rich$, isotopically evolved meteoric waters and magmatic $H_2O-CO_2$ fluids.

  • PDF

Mineralogical and Geochemical Studies of Uranium Deposits of the Okchon Group in Southwestern District off Taejon, Korea (대전서남지대(大田西南地帶)에 있어서의 옥천대(沃川帶) 우라늄광상(鑛床)에 대(對)한 광물학적(鑛物學的) 및 지화학적(地化學的) 연구(硏究))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.289-298
    • /
    • 1984
  • Uraniferous black slates of the Okchon sequence occur in Koesan (northeast) through Miwon-Boun (middle) to the southwest off Taejon (southwest) within the Okchon fold belt. The Uraniferous balck slates in the southwest off Taejon are particularly well developed in Chubu (northeast) and Moksso-ri (middle) areas whereas they are less developed in Jinsan (southwest) area. The uraniferous beds range from less than a meter to 40 meters in thickness and range from less than 0.02% $U_3O_8$ (cut-off-grade) to 0.05% $U_3O_8$ in the southwestern district off Taejon. Electron microprobe analysis of uranium-minerals found in graphitic slate samples enables to estimate their major compositions semi-quantitatively so that uraninite, ferro-uranophane and chlopinite are tentatively identified. Uranium-minerals are closely associated with carbon and metal sulfides. Correlation analysis of trace element concentrations revealed that U and F.C., and U and Mo are lineary correlative respectively and their correlation coefficients are positively high whereas those of U and V, U and Mn, and U and Zr are negatively low, implying that uranium mineralization has been closely related with concentrations of carbon and molybdenum. Stable isotope analyses of pyrite sulfur range widely from +11.5% to -23.3% in ${\delta}^{34}S$ values whereas those of graphite carbon fall within a narrow range between -23.3% and -28.9% in ${\delta}^{13}C$ values. The wide range of ${\delta}^{34}S$ values suggests that the sulfur could be of meteoric origin rather than of igneous source. The narrow range of ${\delta}^{13}C$ values, which are close to those of coal, indicates that the graphite is organic carbon in origin. Therefore, it is concluded that the uranium mineralization in the Okchon sequence took place primarily in sedimentary environment rich in organic matter and sulfide ion, both of which served as the reducing agents to convert soluble uranyl complex to insoluble uranium dioxide.

  • PDF