Mineralogical and Geochemical Studies of Uranium Deposits of the Okchon Group in Southwestern District off Taejon, Korea

대전서남지대(大田西南地帶)에 있어서의 옥천대(沃川帶) 우라늄광상(鑛床)에 대(對)한 광물학적(鑛物學的) 및 지화학적(地化學的) 연구(硏究)

  • Published : 1984.08.31

Abstract

Uraniferous black slates of the Okchon sequence occur in Koesan (northeast) through Miwon-Boun (middle) to the southwest off Taejon (southwest) within the Okchon fold belt. The Uraniferous balck slates in the southwest off Taejon are particularly well developed in Chubu (northeast) and Moksso-ri (middle) areas whereas they are less developed in Jinsan (southwest) area. The uraniferous beds range from less than a meter to 40 meters in thickness and range from less than 0.02% $U_3O_8$ (cut-off-grade) to 0.05% $U_3O_8$ in the southwestern district off Taejon. Electron microprobe analysis of uranium-minerals found in graphitic slate samples enables to estimate their major compositions semi-quantitatively so that uraninite, ferro-uranophane and chlopinite are tentatively identified. Uranium-minerals are closely associated with carbon and metal sulfides. Correlation analysis of trace element concentrations revealed that U and F.C., and U and Mo are lineary correlative respectively and their correlation coefficients are positively high whereas those of U and V, U and Mn, and U and Zr are negatively low, implying that uranium mineralization has been closely related with concentrations of carbon and molybdenum. Stable isotope analyses of pyrite sulfur range widely from +11.5% to -23.3% in ${\delta}^{34}S$ values whereas those of graphite carbon fall within a narrow range between -23.3% and -28.9% in ${\delta}^{13}C$ values. The wide range of ${\delta}^{34}S$ values suggests that the sulfur could be of meteoric origin rather than of igneous source. The narrow range of ${\delta}^{13}C$ values, which are close to those of coal, indicates that the graphite is organic carbon in origin. Therefore, it is concluded that the uranium mineralization in the Okchon sequence took place primarily in sedimentary environment rich in organic matter and sulfide ion, both of which served as the reducing agents to convert soluble uranyl complex to insoluble uranium dioxide.

Keywords