Mobility of Transition Metals by Change of Redox Condition in Dump Tailings from the Dukum Mine, Korea

덕음광산 광미의 산화${\cdot}$환원 조건에 따른 전이원소의 이동성

  • 문용희 (연세대학교 지구시스템과학과) ;
  • 문희수 (연세대학교 지구시스템과학과) ;
  • 박영석 (조선대학교 자원공학과) ;
  • 문지원 (연세대학교 지구시스템과학과) ;
  • 송윤구 (연세대학교 지구시스템과학과) ;
  • 이종천 (국립환경연구원 영산강물 환경연구소)
  • Published : 2003.08.01

Abstract

Tailings of Dukum mine in the vadose and saturated zone were investigated to reveal the mobility of metal elements and the condition of mineralogical solubility according to redox environments throughout the geochemical analysis, thermodynamic modelling, and mineralogical study for solid-samples and water samples(vadose zone; distilled water: tailings=5 : 1 reacted, saturated zone; pore-water extracted). In the vadose zone, sulfide oxidation has generated low-pH(2.72∼6.91) condition and high concentration levels of S $O_4$$^{2-}$(561∼1430mg/L) and other metals(Zn : 0.12∼l57 mg/L, Pb : 0.06∼0.83 mg/L, Cd : 0.06∼l.35 mg/L). Jarosite$(KFe_3(SO_4)_2(OH)_6)$ and gypsum$(CaSO_4{\cdot}2H_2O$) were identified on XRD patterns and thermodynamics modelling. In the saturated zone, concentration of metal ions decreased because pH values were neutral(7.25∼8.10). But Fe and Mn susceptible to redox potential increased by low-pe values(7.40∼3.40) as the depth increased. Rhodochrosite$(MnCO_3)$ identified by XRD and thermodynamics modelling suggested that $Mn^{4+}$ or $Mn^{3+}$ was reduced to $Mn^{2+}$. Along pH conditions, concentrations of dissolved metal ions has been most abundant in vadose zone throughout borehole samples. It was observed that pH had more effect on metal solubilities than redox potential. How-ever, the release of co-precipitated heavy metals following the dissolution of Fe-Mn oxyhydroxides could be the mechanism by which reduced condition affected heavy metal solubility considering the decrease of pe as depth increased in tile saturated zone.

본 연구에서는 덕음광산 광미를 대상으로 심도별로 비포화대에서 광미와 증류수(5:1)의 반응에 의한 반응수와 포화대에서 공극수를 추출하여 화학분석, 열역학적 모델링 그리고, 고상시료에 대한 광물학적 연구를 통해 pH 및 산화${\cdot}$환원 변화에 따른 원소들의 거동특성과 이에 영향을 주는 고상의 용해도 특성을 규명하고자 하였다. 반응수 및 공극수에 대한 심도별 화학분석을 실시한 결과, 비포화대에서는 황화광물의 산화작용으로 낮은 p(2.71~6.91)조건이 형성되어 $SO_4^{2-}$(561~1430mg/L)와 금속이온(Zn:0.12~158mg/L, Pb:0.06~0.83mg/L, CD:0.06~1.35mg/L)의용존이온 함량이 높았다. 그리고 열역학적 모델링과 XRD분석을 통해 자로사이트(jarosite, $KFe_3(SO_4)_2(OH)_6)$와 석고(gypsum, $CaSO_4{\cdot}2H_2O$)가 동정되었다. 포화대에서는 중성의 pH 값(7.25~8.10)으로 인해 비포화대에 비해 금속이온 함량이 줄어들었으나, 심도가 증가함에 따라 pe 값의 감소(7.40$leftrightarro}$3.40)로 산화-환원에 민감한 Fe와 Mn의 용존이온 함량이 다소 증가하였다. 열역학적 모델링과 XRD(X-ray diffraction)분석으로 정성된 능망간석(rhodochrosite, $MnCO_3$)의 존재는 Mn산화물의 환원작용을 지시해 준다. 산화-환원 변위에 비해 pH가 금속화합물의 이온화 작용에 더 많은 영향을 미치지만, 포화대에서는 pe 값의 감소로 Fe와 Mn의 용존 이온의 증가와 An 사이의 상관관계로 대변된다. 따라서, Fe와 Mn수산화물의 재용해로 인해 동시에 침전된 중금속의 기동에 영향을 미치고 있음을 알 수 있다.

Keywords

References

  1. 자원환경지질 v.32 구봉광산 일대 광미, 하상 퇴적물 및 주변토양에서의 중금속원소의 존재형태. 김종욱;문희수;송윤구;유장한
  2. 대한지질학회 추계공동학술발표집 덕음광산 광미야적장의 천부자하수 수질에의 영향; 심도별 단기 모니터링 예비결과. 김종균;박영석;송윤구;김정연;이철규;문지원;문희수
  3. 자원환경지질 v.33 덕음광산 선광광미와 주변토양의 중금속에 대한 수평·수직적인 분산에 관한 연구. 박영석;김진
  4. US Environmental Protection Agency, Athens, GA. MINTEQ2/PRODEFA2: A geochemical assessment model for environmental systems(EPA/600/3-91/021) Allison,J.D.;Brown,D.S.;Nove-Gradac,K.J.
  5. Heavy metals in soils Soil processes and the behaviour of metals. Alloway,B.J.
  6. Geochim. Cosmochim. Acta v.61 Aqueous geochemistry and analysis of pyrite surfaces in the sulfide-rich mine tailings. Al,T.A.;Blowes,D.W.;Martin,C.J.;Cabri,L.J.;Jambor,J.L. https://doi.org/10.1016/S0016-7037(97)00113-0
  7. U.S. Geol. Surv. Open File Rep. User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of minor, trace and redox elements in natural waters Ball,J.W.;Nordstrom,D.K.
  8. Water, Air and Soil Poll. v.90 Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Chuan,M.C.;Shu,G.Y.;Liu,J.C. https://doi.org/10.1007/BF00282668
  9. The geochemistry of natural waters; Surface and groundwater environments(3rd ed.) Drever,J.I.
  10. Eng. Geol. v.60 pH influence on sorption characteristics of heavy metal in the vadose zone. Elzahabi,M.;Yong,R.N. https://doi.org/10.1016/S0013-7952(00)00089-2
  11. Inorganic chemicals in ground water Contaminant hydrogeology(second edition.) Fetter,C.W.
  12. U.S. Geological Survey Water Supply Paper v.2254 Study and interpretation of the chemical characteristics of natural water. Hem,J.D.
  13. Reviews in mineralogy & geochemistry Metal-sulfate salts from sulfide mineral oxidation, Chapter 6. Sulfate minerals Jamber,J.L.;Alper,C.N.;Jamber,J.L.;Nordstrom,D.K.(ed.)
  14. Korea. Appl. Geochem. v.16 Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine Jung,M.C. https://doi.org/10.1016/S0883-2927(01)00040-3
  15. Aqueous environmental geochemistry Iron and Sulfur Geochemistry Langmuir,D.
  16. Chemical equilibria in soils. Lindsay,W.L.
  17. Env.Res.Lab. Office of Res. and Dev.,US Env. Protection Agency, USA, Rept. No. EPA/640/s92/ 018 v.EPA/540/S-92 no.18 Behavior of metals in soils. McLean,J.E.;Bledsoe,B.E.
  18. J. Contam. Hydrol. v.33 The solid-phase controls on the mobility of heavey metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada. McGregor,R.G.;Blowes,D.W.;Jambor,J.L. https://doi.org/10.1016/S0169-7722(98)00060-6
  19. Clays and Clay Miner. v.7 Iron oxide removal from soils and clays by a dithionite-citrate-bicarbonate system buffered with sodium bicarbonate. Mehra,O.P.;Jackson,M.L. https://doi.org/10.1346/CCMN.1958.0070122
  20. Environmental Chemistry O'Neill,P.
  21. User's Guide to PHREEQC2-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculation Parkhurst,D.L.;Appelo,C.A.J.
  22. Geochim. Comochim. Acta v.60 Redox zonation: Equilibrium constraints on the Fe(Ⅲ)/$SO_{4}^{2-}$reduction interface. Postma,D.;Jakobsen,R. https://doi.org/10.1016/0016-7037(96)00156-1
  23. Z. Kuent. Bodenkd v.105 Differenzierung der Eisenoxidedes Bodens durch Extraktion mit Ammoniumoxalate-Losung. Schwertmann,U.
  24. Environmental impacts of mining: Monitoring, Restoration, and Control Sengupta,M.
  25. The Chemical Society, London, Special publication Stability constants of metals-iron complexes. Sillen,L.G.;Martell,A.E.
  26. Appl. Geochem. v.14 Chemical and mineralogical forms of lead, zinc and cadmium in particle size fractions of some wastes, sediments and soil in Korea. Song,Y.;Wilson,M.J.;Moon,H.S.;Bacon,J.R.;Bain,D.C. https://doi.org/10.1016/S0883-2927(98)00093-6
  27. The chemistry of soils Sposito,G.
  28. Geochim. Cosmochim. Acta v.56 The cycling of iron in natural environments: Considerations based on laboratory studies of heterogeneous redox processes. Stumm,W.;Sulzberger,B. https://doi.org/10.1016/0016-7037(92)90301-X
  29. Aquatic Chemistry: chemical equilibria and rates in natural water(3rd ed.) Stumn,W.;Morgan,J.J.
  30. Journal of Research, U.S. Geological Survey. v.2 WATEQ, A computer program for calculating chemical equilibria of natural waters Truesdell,A.H.;Jones,B.F.
  31. Soil Sci. Soc. Am. J. v.57 Ferrihydrite, Lepidocrocite, and Goethite in coating from East Texas vertic soils Wang,H.D.;White,G.N;Turner,F.T;Dixon,J.B. https://doi.org/10.2136/sssaj1993.03615995005700050036x
  32. Geochim. Cosmochim. Acta v.50 The coordination chemistry of weathering: Ⅱ. Dissolution of Fe(Ⅲ) oxides. Zinder,B.;Furrer,G.;Stumm,W. https://doi.org/10.1016/0016-7037(86)90244-9