• 제목/요약/키워드: metal seed

검색결과 138건 처리시간 0.024초

Atomic Layer Deposition of Ruthenium Thin Film from Ru (cymene) (1,5-hexadiene) and O2

  • 정효준;정은애;한정환;박보근;이선숙;황진하;김창균;안기석;정택모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.357.2-357.2
    • /
    • 2014
  • Ruthenium (Ru) 박막은 우수한 화학적 열적 안정성 및 높은 일함수(4.7eV) 특성으로 인해 20 nm급 이하의 차세대 DRAM capacitor의 전극 물질 및 Cu metalization을 위한 seed layer로 각광을 받고 있다. Ru박막의 나노스케일 정보전자소자로의 적용을 위해서는 두께제어가 용이하고 3D 구조에서 우수한 단차 피복 특성을 갖는 atomic layer deposition (ALD)을 이용한 박막 형성이 필수적이다. 이에 본 연구에서는 ALD 방법을 이용하여 0가의(cymene) (1,5-hexadiene) Ru (0) (C16H24Ru) 전구체를 합성, ALD 방법을 이용하여 우수한 초기성장거동을 갖는 Ru 박막을 증착 하였다. 형성된 Ru 박막의 표면 형상, 두께, 밀도를 주사전자현미경(Scanning electron microscopy)과 X-선 반사율 측정(X-ray reflectometer)으로 조사하였다. 또한 전기적 특성을 4침법(four-point-probe)으로 측정하였고, 박막의 화학적 조성과 결정성의 정보를 X-선 광전자분광법(X-ray photoelectron spectroscopy)과 X-선 회절(X-ray diffraction)을 이용하여 확인하였다.

  • PDF

Co-Ni 합금위에서 수직방향으로 정렬된 탄소나노튜브의 성장 (Growth of Vertically Aligned Carbon Nanotubes on Co-Ni Alloy Metal)

  • 류재은;이철진;이태재;손경희;신동혁
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권8호
    • /
    • pp.451-454
    • /
    • 2000
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD usign $C_2H_2$ gas. Since the discovery of carbon nanotubes, growth of carbon nanotubes has been achieved by several methods such as laser vaporization, arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is important to flat panel display applications. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD. Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. In this paper, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density of catalytic particles reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and each nonotubes are grown in bundle.

  • PDF

중금속 내성 및 식물 생장 향상 근권세균 Methylobacterium sp. SY-NiR1의 분리 및 특성 (Characterization of a Heavy Metal-Resistant and Plant Growth-Promoting Rhizobacterium, Methylobacterium sp. SY-NiR1)

  • 구소연;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제35권1호
    • /
    • pp.58-65
    • /
    • 2007
  • 중금속으로 오염된 토양을 정화하기 위한 rhizoremediation 기법에서 식물이 중금속을 흡수하고 이동시키는 효율을 증가시키기 위하여 토양 미생물 특히, 근권세균의 역할이 중요하다. 이를 위하여 본 연구에서는 정유공장 주변의 유류 및 중금속으로 장기간 오염된 토양에서 서식하는 4가지 식물의 근권토양으로부터 Methylobacterium sp. SY-NiR1 균주를 분리하였다. 분리한 Methylobacterium sp. SY-NiR1는 분홍색 콜로니 형성, 막대모양 및 $\alpha-proteobacteria$에 속하는 특성으로 보아 pink-pigmented facultative methylotroph인 것으로 사료된다. 이 균주는 식물성호르몬인 indole acetic acid(IAA) 생산능을 가지고 있으며, 카드뮴, 크롬, 구리, 납, 니켈 그리고 아연 등과 같은 다양한 중금속에 대하여 내성을 가지고 있었으며, $EC_{50}$을 기준으로 한 SY-NiR1의 중금속에 대한 내성은 Zn > Ni > Cu > Pb > Cd > Cr 순이다. 따라서 본 연구에서 분리한 Methylobacterium sp. SY-NiR1 균주는 중금속으로 오염된 토양에서 식물의 발아, 생장 및 발달을 도와 식물의 중금속 흡수를 증가시켜 rhizorememdiation 효율을 증가시킬 수 있을 것으로 기대된다.

Single and mixed chelants-assisted phytoextraction of heavy metals in municipal waste dump soil by castor

  • Wuana, Raymond A.;Eneji, Ishaq S.;Naku, Julius U.
    • Advances in environmental research
    • /
    • 제5권1호
    • /
    • pp.19-35
    • /
    • 2016
  • The phytoextraction of some toxic heavy metals from municipal waste dump soil by castor plant (Ricinus communis) was tested under natural and single or mixed chelant-assisted scenarios in pot microcosms. A sandy loam with total metal contents (mg/kg): Cd (84.5), Cu (114.5), Ni (70.3), Pb (57.8), and Zn (117.5), was sampled from an active dumpsite in Calabar, Nigeria and used for the study. Castor (small seed variety) was grown under natural phytoextraction or single/binary chelant (citric acid, oxalic acid, and EDTA) applications (5-20 mmol/kg soil) for 63 days. Castor exhibited no visual phytotoxic symptoms with typically sigmoid growth profiles at the applied chelant doses. Growth rates, however, decelerated with increase in chelant dose. Post-harvest biomass yields were higher under chelant application than for natural phytoextraction. Both root and shoot metal concentrations (mg/kg) increased quasilinearly and significantly ($p{\leq}0.05$) with increase in chelant dose, furnishing maximum levels as: Cd (55.6 and 20.9), Cu (89.5 and 58.4), Ni (49.8 and 19.6), Pb (32.1 and 12.1), and Zn (99.5 and 46.6). Ranges of translocation factors, root and shoot bioaccumulation factors were 0.21-3.49, 0.01-0.89 and 0.01-0.51, respectively. Overall, the binary chelant treatments were less toxic for R. communis growth and enhanced metal accumulation in shoots to a greater extent than the single chelant scenarios, but more so when EDTA was present in the binary combination. This suggests that the mixed chelants could be considered as alternative treatments for enhanced phytoextraction and revegetation of degraded waste dump soils.

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.

Quality Improvement of Crude Glycerol from Biodiesel Production Using Activated Carbon Derived from Krabok (Irvingia malayana) Seed Shells

  • Wuttichai Roschat;Sarunya Donrussamee;Phatcharanan Smanmit;Samlit Jikjak;Tappagorn Leelatam;Sunti Phewphong;Krittiyanee Namwongsa;Preecha Moonsin;Vinich Promarak
    • 한국재료학회지
    • /
    • 제34권1호
    • /
    • pp.1-11
    • /
    • 2024
  • This research investigated the preparation of activated carbon derived from Krabok (Irvingia malayana) seed shells to improve the quality of crude glycerol obtained during biodiesel production. The activated carbon was prepared using a dry chemical activation method with NaOH, utilizing an innovative biomass incinerator. The results revealed that the resulting KC/AC-two-step exhibited favorable physicochemical adsorption properties, with a high surface area of 758.72 m2/g and an iodine number of 611.10 mg/g. These values meet the criteria of the industrial product standard for activated carbon No. TIS 900-2004, as specified by the Ministry of Industry in Thailand. Additionally, the adsorption efficiency for methylene blue reached an impressive 99.35 %. This developed activated carbon was then used to improve the quality of crude glycerol obtained from biodiesel production. The experimental results showed that the KC/AC-two-step increased the purity of crude glycerol to 73.61 %. In comparison, commercially available activated carbon (C/AC) resulted in a higher crude glycerol purity of 81.19 %, as analyzed by the GC technique. Additionally, the metal content (Zn, Cu, Fe, Pb, Cd, and Na) in purified glycerol using KC/AC-two-step was below the standards for heavy metals permitted in food and cosmeceuticals by the Food and Drug Administration of Thailand and the European Committee for Food Contact Materials and Articles. As a result, it can be inferred that Krabok seed shells have favorable properties for producing activated carbon suitable as an adsorbent to enhance crude glycerol purity. Furthermore, the improved crude glycerol from this research has potential for various industrial applications.

다결정 실리콘 태양전지 제조를 위한 비정질 알루미늄 유도 결정 입자 특성 (Characteristics of aluminum-induced polycrystalline silicon film for polycrystalline silicon solar cell fabrication)

  • 정혜정;김호성;이호재;부성재
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.49.1-49.1
    • /
    • 2010
  • 본 연구에서는 증착법에 의해 제조된 다결정 실리콘을 이용한 태양전지 제작과 관련하여 다결정 실리콘 씨앗층 제조를 위한 기판에 대하여 연구를 수행하였다. 다결정 실리콘 씨앗층을 제조할 수 있는 기술중 aluminum-induced layer exchange(ALILE) 공정을 이용하여 다결정 실리콘 씨앗층을 제조하였다. glass/Al/oxide/a-Si 구조로 알루미늄과 비정질 실리콘 계면에 알루미늄 산화막을 다양한 두께로 형성시켜, 알루미늄 유도 결정화에서 산화막의 두께가 결정화 특성에 미치는 영향, 결정결함, 결정크기에 대하여 연구하였다. 형성된 다결정 실리콘 씨앗층 막의 특성은 OM, SEM, FIB, EDS, Raman spectroscopy, XRD, EBSD 을 이용하여 분석하였다. 그 결과 산화막의 두께가 증가할수록 결함도 함께 증가하였다. 16nm 두께의 산화막 구조에서 <111> 방향의 우선배향성을 가진, $10{\mu}m$의 sub-grain 결정립을 갖는 씨앗층을 제조 하였다.

  • PDF

고효율 저가형 결정질 실리콘 태양전지에 적용될 Ni/Cu 전극 및 Ni silicide 형성에 대한 연구

  • 김민정;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.260-260
    • /
    • 2009
  • In high-efficiency crystalline silicon solar cell, If high-efficiency solar cells are to be commercialized, It is need to develop superior contact formation method and material that can be inexpensive and simple without degradation of the solar cells ability. For reason of plated metallic contact is not only high metallic purity but also inexpensive manufacture. It is available to apply mass production. Especially, Nickel, Copper are applied widely in various electronic manufactures as easily formation is available by plating. Ni is shown to be a suitable barrier to Cu diffusin as well as desirable contact metal to silicon. Nickel monosilicide has been suggested as a suitable silicide due to its lower resistivitym lower sintering temperature and lower layer stress than $TiSi_2$. In this paper, Nickel as a seed layer and diffusion barrier is plated by electroless plating to make nickel monosilicide.

  • PDF

A Facile Approach to Fabrication of Hollow ZnO Nanoparticles

  • Cho, Gwang-Rae;Kim, Dong-Hyeon;Lee, Dong-Hoon
    • Composites Research
    • /
    • 제31권3호
    • /
    • pp.94-98
    • /
    • 2018
  • Well-defined, monodispersed hollow ZnO nanoparticles were successfully synthesized by a facile one-pot solution method at room temperature. Hollow ZnO nanoparticles were fabricated using polystyrene nanoparticles as seed particles. The removal of core particles via solvent extraction yields hollow nanoparticles. The structures and morphologies of the obtained products were characterized with Fourier transform infrared (FT-IR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction pattern (XRD) and Scanning electron microscopy (SEM). The formation mechanism of the hollow structure of the ZnO nanoparticles was also investigated. The technique developed here is expected to be useful in the preparation other metal oxides and hollow architectures.

Plant Growth Regulator Produced by Streptomyces sp. (Part II) Conditions of Production and Some Properties of the Plant Growth Regulator

  • 김광현;서정훈
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1978년도 추계학술대회
    • /
    • pp.207.5-208
    • /
    • 1978
  • Effects of the plant growth regulator (P. G. R.)on the reaction of proteinase, $\gamma-amylase$ and acid phosphatase were investigated, and also were the conditions of production of P. G. R. by Stroptomyces sp. 445. The P. G. R. had no effect on the act ivities of such enzymes in mung bean seedling. But in germinating seed previously treated with P. G. R. it effected the activity of protease in cotyledon. In the conditions of production of P. G. R., the maxim, activity was appeared in shaking cutlure at $30^{\circ}C$ for 5 days, and by the addition of peptone or casein hydrolysate as nitrogen source, soluble starch as carbon source, and sulfur as metal ion.

  • PDF