References
- Abdoulaye, S., A. C. J. Timmers, C. Knief, and J. A. Vorholt. 2005. Methylotrophic metabolism is advantageous for methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol. 71: 7245-7252 https://doi.org/10.1128/AEM.71.11.7245-7252.2005
- Araujo, W. L., J. Marcon, W. Jr. Maccheroni, J. D. van Elsas, J. W. L. van Vuurde, and J. L. Azevedo. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 68: 4906-4919 https://doi.org/10.1128/AEM.68.10.4906-4914.2002
- Bar-Ness, E., Y. Hadar, Y. Chen, A. Shanzer, and J. Libman. 1992. Iron uptake by plants from microbial siderophores. Plant Physiol. 99: 1329-1335 https://doi.org/10.1104/pp.99.4.1329
-
Basile, D. V., M. R. Basile, Q. -Y. Li, and W. A. Corpe. 1985. Vitamin
$B_{12}$ -stimulate growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum.(Hepaticae). Bryologist 88: 77-81 https://doi.org/10.2307/3242585 - Corpe, W. A. 1985. A method for detecting methylotrophic bacteria on solid surfaces. J. Microbiol. Ecol. 62: 243-250
- Corpe, W. A. and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol. Ecol. 62: 243-250 https://doi.org/10.1111/j.1574-6968.1989.tb03698.x
- Davies, P. J. 1995. The plant hormone concept: Concentration, sensitivity, and transport, pp. 13-18. In: P. J. Davies(ed.), Plant hormones: Physiology, biochemistry, and Molecular Biology. Kluwer Acedemic Publishers, Dordrecht, The Netherlands
- Diaz-Ranina, M. and E. Baath. 1996. Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl. Environ. Microbiol. 62: 2970-2977
- Doronina, N. V., E. G. Ivanova, and Yu. A. Trotsenko. 2002. New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins. Microbiology 71: 116-118 https://doi.org/10.1023/A:1017966820382
- Dworkin, M. and J. W. Foster. 1958. Experiments with some microorganism which utilize ethane and hydrogen. J. Bacteriol. 75: 592-603
- Fett, W. F., S. F. Osman, and M. F. Duun. 1987. Auxin production by plant-pathogenic Pseudomonas and Xanthomonas. Appl. Environ. Microbiol. 53: 1839-1845
- Foster, T. J. 1983. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol. Rev. 47: 361-409
- Gadd, G. M. 1992. Microbial control of pollution, pp. 59-88. Cambridge Press, Cambridge
- Green, P. N. 1992. The genus Methylobacterium, pp. 2342-2349. In: A. Balows, H. G Truper, M. Dworkin, W. Harder, and K. H. Schleifer( eds), The prokaryotes, second ed, Springer, Berlin, Germany
- Heggo, A. and J. S. Angel. 1990. Effects of vesiculararbuscular mycorrhizal fungi on heavy metal uptake by soybean. Soil Biol. Biochem. 22: 865-869 https://doi.org/10.1016/0038-0717(90)90169-Z
- Hiraishi, A., K. Furuchi, A. Matsumoto, K. A. Koike, M. Fukuyama, and K. Tabuchi. 1995. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl. Environ. Microbiol. 61: 2099-2107
- Holland, M. A. and J. C. Polacco. 1994. PPFMs and other covert contaminants: is there more to plant physiology than just plant. Plant Physiol. 45: 197-209
- Idris, R., R. Trifonova, M. Puschenreiter, W. W. Wenzel, and A. Sessitsch. 2004. Bacerial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microboil. 70: 2667-2677 https://doi.org/10.1128/AEM.70.5.2667-2677.2004
- Idris, R., M. Kuffuer, L. Bodrossy, M. Puschenreiter, S. Monchy, W. W. Wenzel, and A. Sessitsch. 2006. Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov., Syst. Appl. Microbiol. 29: 634-644 https://doi.org/10.1016/j.syapm.2006.01.011
- Ietswaart, J. H., W. A. J. Griffoen, and W. H. O. Ernst. 1992. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Envion. Microbiol. 33: 1225-1228
- Ivanova, E. G., N. V. Doronina, A. O. Shepeliakovskaia, A. G. Laman, F. A. Brovko, and Y. A. Trotsenko. 2000. Facultative and obligate aerobic methylobacteria synthesize cytokinins. Microbiology 67: 646-651
- Ivanova, E. G., N. V. Doronina, A. O. Shepeliakovskaia, A. G. Laman, F. A. Brovko, and Y. A. Trotsenko. 2001. Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70: 392-397 https://doi.org/10.1023/A:1010469708107
- Jaftha, J. B., B. W. Strijdom, and P. L. Steyn. 2002. Characterization of pigmented methylotrophic bacteria which nodulate Lotononis bainesii. Appl. Microbiol. 25: 440-449 https://doi.org/10.1078/0723-2020-00124
- Kim, T. J., E. Y. Lee, Y. J. Kim, K. S. Cho, and H. W. Ryu. 2003. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World J. Microbiol. Biotechnol. 19: 411-417 https://doi.org/10.1023/A:1023998719787
- Krishnamurti, G S. R., G. Cieslinski, P. M. Huang, and K. C. J. Van Rees. 1997. Kinetics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability. J. Environ. Qual. 26: 271-277 https://doi.org/10.2134/jeq1997.00472425002600010038x
- Kumino, T., K. Seaki, K. Nagaoka, H. Oyaizu, and S. Matsumoto. 2001. Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur. J. Soil Biol. 37: 95-102 https://doi.org/10.1016/S1164-5563(01)01070-6
- Langley, S. and T. J. Beveridge. 1999. Effect of O-side-chain-lipopolysaccharide chemistry on metal binding. Appl. Environ. Microbiol. 65: 489-498
- Libbert, E., S. Wichner, U. Schiewer, H. Risch, and W. Kaiser. 1966. The influence of epiphytic bacteria on auxin metabolism. Planta 68: 327-334 https://doi.org/10.1007/BF00386332
- Lidstrom, M. E. and L. Christoserdova. 2002. Plants in the pink: cytokinin production by Methylobacterium. J. Bacteriol. 184: 1818 https://doi.org/10.1128/JB.184.7.1818.2002
- Lodewyckx, C., M. Mergeay, J. Vangronsfeld, H. Clijsters, and D. Van der Lelie. 2002. Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. Calaminaria. Int. J. Phytoreme. 4: 101-105 https://doi.org/10.1080/15226510208500076
- Madhaiyan, M., S. Poonguzhali, M. Senthilkumar, S. Seshadri, H. Y. Chung, and J. C. Yang. 2004. Growth promotion and inducution of systemic resistance in rice cultivar Co-47(Oryza sativa L.) by Methylobacterium spp. Botanical Bulletin of Academia Sinica 45: 315-324
- Madhaiyan, M., S. Poonguzhali, J. Ryu, and T. Sa. 2006. Regulation of ethylene levels in canola(Barassica compestris) by 1-aminocyclopropane-1-carboxylate deainase-containing Methylobacterium fujisawaense. Planta 224: 268-278 https://doi.org/10.1007/s00425-005-0211-y
- Mench, M. and E. Martin. 1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea may. L., Nicotiana tabbacum L., and Nicotiana rustica L. Plant Soil 137: 187-196
- Nemecek-Marshall, M., R. C. MacDonald, J. J. Franzen, C. L. Wojciechowski, and R. Fall. 1995. Methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol. 108: 1359-1368 https://doi.org/10.1104/pp.108.4.1359
- Omer, Z. S., R. Tombolini, A. Broberg, and B. Gerhardson. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43: 93-96 https://doi.org/10.1023/B:GROW.0000038360.09079.ad
- Omer, Z. S., R. Tombolini, and B. Gerhardson. 2004. Plant colonization by pink-pigmented facultative methylotrophic bacteria(PPFMs). FEMS Microbiol. Ecol. 47: 319-326 https://doi.org/10.1016/S0168-6496(04)00003-0
-
Rajkumar, M., R. Nagendran, K. J. Lee, W. H. Lee, and S. Z. Kim. 2005. Influence of plant growth promoting bacteria and
$Cr^{6+}$ on the growth of Indian mustard. Chemosphere 62: 741-748 - Reber, H. H. 1992. Simultaneous estimates of the diversity and the degradative capability of heavy-metal-affected soil bacterial communities. Biol. Fertil. Soils 13: 181-186
- Roane, T. M. and S. T. Kellogg, 1996. Characterization of bacterial communities in metal-contaminated soils. Can. J. Microbiol. 42: 593-603 https://doi.org/10.1139/m96-080
- Roane, T. M. 1999. Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microb. Ecol 37: 218-224 https://doi.org/10.1007/s002489900145
- Robert, M. and J. Berthelin. 1994. Role of biological and biochemical factor in soil mineral weathering. In: P.M. Huang, M. Schnitzer(eds.), Interaction of soil minerals with natural organic and microbes. Soil Sci. Soc. Amer, Madison, WI
- Ryu, J., M. Madhaiyan, S. Poonguzhali, W. Yim, P. Indiragandhi, K. Kim, R. Anadham, J. Yun, and T. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato(Lycopersicon esculentum L.) and red pepper(Capsicum annum L.) growth. J. Microbiol. Biotechnol. 16: 1622-1628
- Sy, A., E. Giraud, P. Jourand, N. Garcia, A. Willems, P. de Lajudie, Y. Prin, M. Neyra, M. Gillis, C. Boivin-Masson, and B. Dreyfus. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 183: 214-220 https://doi.org/10.1128/JB.183.1.214-220.2001
- Valls, M. and V. de Lorenzo. 2002. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 26: 327-338 https://doi.org/10.1111/j.1574-6976.2002.tb00618.x