• Title/Summary/Keyword: metabolites analysis

Search Result 672, Processing Time 0.037 seconds

Cytoprotective Effects of Radix Curcumae Aromaticae in Human Umbilical Vein Endothelial Cells (울금에 의한 혈관내피세포 보호 효과에 대한 연구)

  • Seo Eun A;Chung Hun Taeg;Ko Kwang Hak;Kwon Kang Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1805-1809
    • /
    • 2004
  • In order to validate the use of Radix Curcumae Aromaticae as an anti-inflammatory drug in the traditional Korean medicine, I have investigated the effect of water-soluble extract of Radix Curcumae Aromaticae (ECA) on the expression of inducible heme oxygenase-1 (HO-1), which ha.s anti-inflammatory and cytoprotective effects stimulates, in human umbilical vein endothelial cells (HUVECs) stimulated with a high dose of pro-inflammatory tumor necrosis factor-alpha (TNF-α). The extract protected dose-dependently HUVECs against TNF-α-induced apoptosis, as measured qualitatively by a nuclear staining method using the fluoresoence DAPI and quantitatively by a flow cytometry using fluoresce-enhanced Annexin V antibody, and significantly Increased HO-1 expression, as determined by Western blotting analysis using anti-HO-1 antibody. Biockage of HO-1 activity by a pharmacological inhibitor reversed cytoprotection afforded by the extract, and treatment with carbon monoxide, one of HO-1 metabolites, resulted in cytoprotection comparable to the extract. These results suggest that ECA may have therapeutic potential in the control of endothelial disorders caused by inflammatory cytokines.

Removal of RDX using Lab-scale Plug Flow Constructed Wetlands Planted with Miscanthus sacchariflorus (Maxim.) Benth (물억새를 식재한 플러그 흐름 습지에서의 RDX 제거동역학)

  • Lee, Ahreum;Kim, Bumjoon;Park, Jieun;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.85-94
    • /
    • 2015
  • RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) is the most important explosive contaminant, both in concentration and in frequency, at military shooting ranges in which green technologies such as phytoremediation or constructed wetlands are the best option for mitigation of explosive compounds discharge to the environment. A study was conducted with two identical lab-scale plug flow constructed wetlands planted with Amur silver grass to treat water artificially contaminated with 40 mg/L of toxic explosive compound, RDX. The reactor was inoculated with or without RDX degrading mixed culture to evaluate plant-microorganism interactions in RDX removal, transformation products distribution, and kinetic constants. RDX and its metabolites in water, plant, and sediment were analyzed by HPLC to determine mass balance and kinetic constants. After 30 days of operation, the reactor reached steady-state at which more than 99% of RDX was removed with or without the mixed culture inoculation. The major transformation product was TNX (Trinitroso-RDX) that comprised approximately 50% in the mass balance of both reactors. It was also the major compound in the plant root and shoot system. Acute toxicity analysis of the water samples showed more than 30% of toxicity reduction in the effluent than that of influent containing 40 mg/L of RDX. In the Amur silver grass mesocosm seeded with the mixed culture, the specific RDX removal rate, that is 1st order removal rate normalized to plant fresh weight, was estimated to be 0.84 kg−1 day−1 which is 16.7% higher than that in the planted only mesocosm. Therefore, the results of this study proved that Amur silver grass is an effective plant for RDX removal in constructed wetlands and the efficiency can be increased even more when applied with RDX degrading microbial consortia.

Effect of carbon substrate on the intracellular fluxes in succinic acid producing Escherichia coli.

  • Hong, Soon-Ho;Lee, Dong-Yup;Kim, Tae-Yong;Lee, Sang-Yup;Park, Sun-Won
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.251-257
    • /
    • 2003
  • Metabolic engineering has become a new paradigm for the more efficient production of desired bioproducts. Metabolic engineering can be defined as directed modification of cellular metabolism and properties through the introduction, deletion, and modification of metabolic pathways by using recombinant DNA and other molecular biological tools. During the last decade, metabolic flux analysis(MFA) has become an essential tool fur metabolic engineering. By MFA, the intracellular metabolic fluxes can be quantified by the measurement of extracellular metabolite concentrations in combination with the stoichiometry of intracellular reactions and mass balances. The usefulness and functionality of MFA are demonstrated by applying to metabolic pathways in E. coli. First, a large-scale in silico E. coli model is constructed, and then the effects of carbon sources on intracellular flux distributions and succinic acid production were investigated on the basis of the uptake and secretion rates of the relevant metabolites. The results indicated that succinic acid yields increased in order of gluconate, glucose and sorbitol. Acetic acid and lactic acid were produced as major products rather than when gluconate and glucose were used carbon sources. The results indicated that among three carbon sources available, the most reduced substrate is sorbitol which yields efficient succinic acid production.

  • PDF

Identification and toxigenic potential of a Nostoc sp.

  • Nowruzi, Bahareh;Khavari-Nejad, Ramezan-Ali;Sivonen, Karina;Kazemi, Bahram;Najafi, Farzaneh;Nejadsattari, Taher
    • ALGAE
    • /
    • v.27 no.4
    • /
    • pp.303-313
    • /
    • 2012
  • Cyanobacteria are well known for their production of a multitude of highly toxic and / or allelopathic compounds. Among the photosynthetic microorganisms, cyanobacteria, belonging to the genus Nostoc are regarded as good candidate for producing biologically active secondary metabolites which are highly toxic to humans and other animals. Since so many reports have been published on the poisoning of different animals from drinking water contaminated with cyanobacteria toxins, it might be assumed that bioactive compounds are found only in aquatic species causes toxicity. However, the discovery of several dead dogs, mice, ducks, and fish around paddy fields, prompted us to study the toxic compounds in a strain of Nostoc which is most abundant in the paddy fields of Iran, using polymerase chain reaction and liquid chromatography coupled with a diode array detector and mass spectrophotometer. Results of molecular analysis demonstrated that the ASN_M strain contains the nosF gene. Also, the result of ion chromatograms and $MS^2$ fragmentation patterns showed that while there were three different peptidic compound classes (anabaenopeptin, cryptophycin, and nostocyclopeptides), there were no signs of the presence of anatoxin-a, homoanatoxin-a, hassallidin or microcystins. Moreover, a remarkable antifungal activity was identified in the methanolic extracts. Based on the results, this study suggests that three diverse groups of potentially bioactive compounds might account for the death of these animals. This case is the first documented incident of toxicity from aquatic cyanobacteria related intoxication in dogs, mice, and aquatic organisms in Iran.

곰팡이 분리주 MT60109가 생산하는 Phospholipase C 저해물질의 분리

  • Oh, Won-Keun;Lee, Hyun-Sun;Park, Chan-Sun;Ahn, Soon-Cheol;Ko, Hack-Ryong;Mheen, Tae-Ick;Ahn, Jong-Seog
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.592-597
    • /
    • 1997
  • During the screening of inhibitors against phospholipase C (PLC) and the formation of inositol phosphates (IP$_{t}$) at NIH3T3${\gamma}$1 cells from microbial secondary metabolites, we selected a fungal strain MT60109 which was capable of producing an inhibitor. By the taxonomic studies, this fungus was identified as Pseudallescheria sp. MT60109 and an inhibitor of PLC was purified by BuOH extraction and chromatographic techniques from the culture broth of Pseudallescheria sp. MT60109. The inhibitor was identified as thielavin B by the physico-chemical properties and spectroscopic analysis of UV, FAB-MS, $^{1}$H, $^{13}$C-NMR, $^{1}$H-$^{1}$H COSY and HMBC. Thielavin B showed potent inhibitory activity against PLC purified from bovine brain with an IC$_{50}$ of 20 $\mu$M. And it also inhibited the formation of inositol phosphates in platelet-derived growth factor (PDGF) -stimulated NIH3T3${\gamma}$1 cells with an IC$_{50}$ of 20 $\mu$M.

  • PDF

Phoma herbarum as a New Gibberellin-Producing and Plant Growth-Promoting Fungus

  • Hamayun, Muhammad;Khan, Sumera Afzal;Khan, Abdul Latif;Rehman, Gauhar;Sohn, Eun-Young;Shah, Aamer Ali;Kim, Sang-Kuk;Joo, Gil-Jae;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1244-1249
    • /
    • 2009
  • Endophytic fungi are known for the production of valuable metabolites, but information on the gibberellin production capacity of this group is limited. We isolated 9 endophytic fungi from the roots of salt-stressed soybean plants and screened them on waito-c rice, in order to identify plant growth promoting fungal strains. The fungal isolate TK-2-4 gave maximum plant length (20.35 cm) promotion in comparison with wild-type Gibberella fujikuroi (19.5 cm). In a separate experiment, bioassay of TK-2-4 promoted plant length and biomass of soybean cultivar Taegwangkong. The TK-2-4 culture filtrate was analyzed for the presence of gibberellins, and it was found that all physiologically active gibberellins, especially $GA_4$ and $GA_7$, were present in higher amounts ($GA_1$, 0.11 ng/ml; $GA_3$, 2.91 ng/ml; $GA_4$, 3.21 ng/ml; and $GA_7$, 1.4 ng/ml) in conjunction with physiologically inactive $GA_9$ (0.05 ng/ml), $GA_{12}$ (0.23 ng/ ml), $GA_{15}$ (0.42 ng/ml), $GA_{19}$ (0.53 ng/ml), and $GA_{20}$ (0.06 ng/ml). The fungal isolate TK-2-4 was later identified as a new strain of Phoma herbarum, through the phylogenetic analysis of 28S rDNA sequence.

1H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver

  • Xu, Chuang;Sun, Ling-wei;Xia, Cheng;Zhang, Hong-you;Zheng, Jia-san;Wang, Jun-song
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.219-229
    • /
    • 2016
  • Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using $^1H$ nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in ${\beta}$-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, ${\gamma}$-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows.

Identification of Stenotrophomonas maltophilia LK-24 and its Degradability of Crystal Violet

  • Kim, Jeong-Dong;Yoon, Jung-Hoon;Park, Yong-Ha;Fusako Kawai;Kim, Hyun-Tae;Lee, Dae-Weon;Kang, Kook-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.437-443
    • /
    • 2002
  • A number of soil and wastewater samples were collected from the vicinity of an effluent treatment plant for the chemical industry. Several microorganisms were screened fur their ability to decolorize the triphenylmethane group of dyes. As a result, a novel crystal violet dye-degrading strain LK-24 was isolated. Taxonomic identification including 16S rDNA sequencing and phylogenetic analysis indicated that the isolate had a $99.5\%$ homology in its 16S rDNA base sequence with Stenotrophomonas maltophilia. The triphenylmethane dye, crystal violet, was degraded extensively by growing cells of Stenotrophomonas maltophilia LK-24 in agitated liquid cultures, although their growth was strongly inhibited in the initial stage of incubation. This group of dyes is toxic, depending on the concentration used. The dye was significantly degraded at a relatively lower concentration, below $100{\mu}g\;ml^-1$, yet the growth of the cells was totally suppressed at a dye concentration of $250{\mu}g\;ml^-1$. The degradation products of crystal violet were identified as 4,4'-bis(dimethylamino)-benzophenone and ${\rho}$-dimethylaminophenol by Gas chromatography-Mass spectrometry. The 4,4'-bis(dimethylamino)-benzophenone was easily obtained in a reasonable yield, as it was not metabolized further by S. maltophilia LK-24; however, the ${\rho}$-dimethylaminophenol was not easily identifiable, as it was further metabolized.

Proteome Analysis of Paenibacillus polymyxa E681 Affected by Barley

  • Seul, Keyung-Jo;Park, Seung-Hwan;Ryu, Choong-Min;Lee, Yong-Hyun;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.934-944
    • /
    • 2007
  • Paenibacillus polymyxa E681 is known to be able to suppress plant diseases by producing antimicrobial compounds and to promote plant growth by producing phytohormones, and secreting diverse degrading enzymes. In spite of these capabilities, little is known regarding the flow of information from the bacterial strain to the barley roots. In an attempt to determine the flow of information from the bacterial strain to barley roots, the strain was grown in the presence and absence of barley, and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and MALDI-TOF mass spectrometry were used. 2D-PAGE detected approximately 1,000 spots in the cell and 1,100 spots in the supernatant at a pH 4-10 gradient. Interestingly, about 80 spots from each sample showed quantitative variations. Fifty-three spots from these were analyzed by MALDI-TOF mass spectrometry and 28 proteins were identified. Most of the cytosolic proteins expressed at higher levels were found in P. polymyxa E681 cells grown in the presence of barley rather than in the absence of barley. Proteins detected at a lower level in the surpernatant of P. polymyxa E68l cells grown in the presence of barley were lipoprotein, glucose-6-phosphate 1-dehydrogenase, heat-shock protein HtpG, spermidine synthase, OrfZ, ribonuclease PH, and coenzyme PQQ synthesis protein, and flagellar hook-associated protein 2 whereas proteins detected at a higher level in the surpernatant of P. polymyxa E681 cells grown in the presence of barley included D-alanyl-D-alanine ligase A, isopentenyl-diphosphate delta-isomerase, ABC transporter ATP-binding protein Uup, lipase. Many of the proteins belonging to plant-induced stimulons are associated with biosynthetic metabolism and metabolites of proteins and transport. Some of these proteins would be expected to be induced by environmental changes resulting from the accumulation of plant-secreted substances.

Isolation of a Gibberellin-producing fungus (Penicillium sp. MH7) and Growth Promotion of Crown Daisy (Chrysanthemum coronarium)

  • Hamayun, Muhammad;Khan, Sumera Afzal;Iqbal, Ilyas;Ahmad, Bashir;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.202-207
    • /
    • 2010
  • Plant growth promoting fungi (PGPF) are well known for the production of useful secondary metabolites. However, limited information is available on the gibberellin (GA) production capacity of PGPF of endophytic origin. In the current study, 15 fungal endophytes were isolated from the roots of Crown daisy, and then screened on Waito-c rice, in order to identify plant growth promoting fungi. The fungal isolate MH7 significantly increased the shoot length (12.1 cm) of Waito-c in comparison with control treatment (7.9 cm). In a separate experiment, the culture filtrate (CF) of MH7 significantly promoted the growth attributes of Crown daisy. The MH7 CF was analyzed for gibberellins and it contained all physiologically active gibberellins ($GA_1$, 1.37 ng/ml; $GA_3$, 5.88 ng/ml; $GA_4$, 8.62 ng/ml; and $GA_7$, 2.05 ng/ml) in conjunction with physiologically inactive $GA_9$ (0.83 ng/ml), $GA_{12}$ (0.44 ng/ml), $GA_{15}$ (0.74 ng/ml), $GA_{19}$ (1.16 ng/ml), and $GA_{20}$ (0.98 ng/ml). The CF of MH7 produced higher amounts of $GA_3$, $GA_4$, $GA_7$, $GA_9$, and $GA_{12}$ than wild-type Fusarium fujikuroi, which was used as a control for GA production. The fungal isolate MH7 was later identified as a new strain of Penicillium on the basis of its morphological characteristics and phylogenetic analysis of the 188 rDNA sequence.