DOI QR코드

DOI QR Code

Identification and toxigenic potential of a Nostoc sp.

  • Received : 2012.09.16
  • Accepted : 2012.11.20
  • Published : 2012.12.15

Abstract

Cyanobacteria are well known for their production of a multitude of highly toxic and / or allelopathic compounds. Among the photosynthetic microorganisms, cyanobacteria, belonging to the genus Nostoc are regarded as good candidate for producing biologically active secondary metabolites which are highly toxic to humans and other animals. Since so many reports have been published on the poisoning of different animals from drinking water contaminated with cyanobacteria toxins, it might be assumed that bioactive compounds are found only in aquatic species causes toxicity. However, the discovery of several dead dogs, mice, ducks, and fish around paddy fields, prompted us to study the toxic compounds in a strain of Nostoc which is most abundant in the paddy fields of Iran, using polymerase chain reaction and liquid chromatography coupled with a diode array detector and mass spectrophotometer. Results of molecular analysis demonstrated that the ASN_M strain contains the nosF gene. Also, the result of ion chromatograms and $MS^2$ fragmentation patterns showed that while there were three different peptidic compound classes (anabaenopeptin, cryptophycin, and nostocyclopeptides), there were no signs of the presence of anatoxin-a, homoanatoxin-a, hassallidin or microcystins. Moreover, a remarkable antifungal activity was identified in the methanolic extracts. Based on the results, this study suggests that three diverse groups of potentially bioactive compounds might account for the death of these animals. This case is the first documented incident of toxicity from aquatic cyanobacteria related intoxication in dogs, mice, and aquatic organisms in Iran.

Keywords

References

  1. Becker, J. E., Moore, R. E. & Moore, B. S. 2004. Cloning, sequencing, and biochemical characterization of the nostocyclopeptide biosynthetic gene cluster: molecular basis for imine macrocyclization. Gene 325:35-42. https://doi.org/10.1016/j.gene.2003.09.034
  2. Bui, H. T. N., Jansen, R., Pham, H. T. L. & Mundt, S. 2007. Carbamidocyclophanes A-E, chlorinated paracyclophanes with cytotoxic and antibiotic activity from the vietnamese cyanobacterium Nostoc sp. J. Nat. Prod. 4:499-503.
  3. Dembitsky, V. M. & Rezanka, T. 2005. Metabolites produced by nitrogen-fixing Nostoc species. Folia Microbiol. 50:363-391. https://doi.org/10.1007/BF02931419
  4. Desikachary, T. V. 1959. Cyanophyta. Indian Council of Agricultural Research, New Delhi, 686 pp.
  5. Dittmann, E., Neilan, B. A. & Borner, T. 2001. Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. Appl. Microbiol. Biotechnol. 57:467-473. https://doi.org/10.1007/s002530100810
  6. Ehrenreich, I. M., Waterbury, J. B. & Webb, E. A. 2005. Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl. Environ. Microbiol. 11:7401-7413.
  7. Espinel-Ingroff, A. 2007. Standardized disk diffusion method for yeasts. Clin. Microbiol. Newsl. 29:97-100. https://doi.org/10.1016/j.clinmicnews.2007.06.001
  8. Fewer, D., Jokela, J., Rouhiainen, L., Wahlsten, M., Koskenniemi, K., Stal, L. J. & Sivonen, K. 2009. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacterium Nodularia spumigena. Mol. Microbiol. 73:924-937. https://doi.org/10.1111/j.1365-2958.2009.06816.x
  9. Fujii, K., Sivonen, K., Kashiwagi, T., Hirayama, K. & Harada, K. 1999. Nostophycin, a novel cyclic peptide from the toxic cyanobacterium, Nostoc sp. 152. J. Org. Chem. 64:5777-5782. https://doi.org/10.1021/jo982306i
  10. Golakoti, T., Yoshida, W. Y., Chaganty, S. & Moore, R. E. 2000. Isolation and structures of nostopeptolides A1, A2 and A3 from the cyanobacterium Nostoc sp. GSV224. Tetrahedron 56:9093-9102. https://doi.org/10.1016/S0040-4020(00)00764-X
  11. Golakoti, T., Yoshida, W. Y., Chaganty, S. & Moore, R. E. 2001. Isolation and structure determination of nostocyclopeptides A1 and A2 from the terrestrial cyanobacterium Nostoc sp. ATCC53789. J. Nat. Prod. 64:54-59. https://doi.org/10.1021/np000316k
  12. Harada, K. 2004. Production of secondary metabolites by freshwater cyanobacteria. Chem. Pharm. Bull. 52:889-899. https://doi.org/10.1248/cpb.52.889
  13. Hoffmann, D., Hevel, J. M., Moore, R. E. & Moore, B. S. 2003. Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224. Gene 311:171-180. https://doi.org/10.1016/S0378-1119(03)00587-0
  14. Hunsucker, S. W., Klage, K., Slaughter, S. M., Potts, M. & Helm, R. F. 2004. A preliminary investigation of the Nostoc punctiforme proteome. Biochem. Biophys. Res. Commun. 317:1121-1127. https://doi.org/10.1016/j.bbrc.2004.03.173
  15. Jaki, B., Heilmann, J. & Sticher, O. 2000. New antibacterial metabolites from the cyanobacterium Nostoc commune (EAWAG 122b). J. Nat. Prod. 63:1283-1285. https://doi.org/10.1021/np000033s
  16. Jokela, J., Herfindal, L., Wahlsten, M., Permi, P., Selheim, F., Vasconçelos, V., Døskeland, S. O. & Sivonen, K. 2010. A novel cyanobacterial nostocyclopeptide is a potent antitoxin against microcystins. ChemBioChem 11:1594-1599. https://doi.org/10.1002/cbic.201000179
  17. Kajiyama, S., Kanzaki, H., Kawazu, K. & Kobayashi, A. 1998. Nostofungicidine, an antifungal lipopeptide from the field-grown terrestrial blue-green alga Nostoc commune. Tetrahedron Lett. 39:3737-3740. https://doi.org/10.1016/S0040-4039(98)00573-5
  18. Kanekiyo, K., Lee, J. -B., Hayashi, K., Takenaka, H., Hayakawa, Y., Endo, S. & Hayashi, T. 2005. Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J. Nat. Prod. 68:1037-1041. https://doi.org/10.1021/np050056c
  19. Kaushik, B. D. 1987. Laboratory methods for blue-green algae. Associated Publishing Co., New Delhi, pp. 17-63.
  20. Komarek, J. & Anagnostidis, K. 1989. Modern approach to the classification system of Cyanophytes, 4. Nostocales. Arch. Hydrobiol. Suppl. 82:247-345.
  21. Koskenniemi, K., Lyra, C., Rajaniemi-Wacklin, P., Jokela. J. & Sivonen, K. 2007. Quantitative real-time PCR detection of toxic Nodularia cyanobacteria in the Baltic Sea. Appl. Environ. Microbiol. 73:2173-2179. https://doi.org/10.1128/AEM.02746-06
  22. Liang, J., Moore, R. E., Moher, E. D., Munroe, J. E., Al-awar, R. S., Hay, D. A., Varie, D. L., Zhang, T. Y., Aikins, J. A., Martinelli, M. J., Shih, C., Ray, J. E., Gibson, L. L., Vasudevan, V., Polin, L., White, K., Kushner, J., Simpson, C., Pugh, S. & Corbett, T. H. 2005. Cryptophycins-309, 249 and other cryptophycin analogs: preclinical efficacy studies with mouse and human tumors. Investig. New Drugs 23:213-224. https://doi.org/10.1007/s10637-005-6729-9
  23. Luesch, H., Hoffmann, D., Hevel, J. M., Becker, J. E., Golakoti, T. & Moore, R. E. 2003. Biosynthesis of 4-methylproline in cyanobacteria: cloning of nosE and nosF genes and biochemical characterization of the encoded dehydrogenase and reductase activities. J. Org. Chem. 68:83-91. https://doi.org/10.1021/jo026479q
  24. Murakami, M., Suzuki, S., Itou, Y., Kodani, S. & Ishida, K. 2000. New anabaenopeptins, potent carboxypeptidase-A inhibitors from the cyanobacterium Aphanizomenon flos-aquae. J. Nat. Prod. 63:1280-1282. https://doi.org/10.1021/np000120k
  25. Namikoshi, M., Rinehart, K. L., Sakai, R., Sivonen, K. & Carmichael, W. W. 1990. Structures of three new cyclic heptapeptide hepatotoxins produced by the cyanobacterium (blue-green alga) Nostoc sp. strain 152. J. Org. Chem. 55:6135-6139. https://doi.org/10.1021/jo00312a019
  26. Nubel, U., Garcia-Pichel, F. & Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63:3327-3332.
  27. Oksanen, I., Jokela, J., Fewer, D. P., Wahlsten, M., Rikkinen, J. & Sivonen, K. 2004. Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Appl. Environ. Microbiol. 70:5756-5763. https://doi.org/10.1128/AEM.70.10.5756-5763.2004
  28. Rajaniemi, P., Hrouzek, P., Kaštovská, K., Willame, R., Rantala, A., Hoffmann, L., Komárek, J. & Sivonen, K. 2005. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int. J. Syst. Evol. Microbiol. 55:11-26. https://doi.org/10.1099/ijs.0.63276-0
  29. Rantala, A., Rajaniemi-Wacklin, P., Lyra, C., Lepisto, L., Rintala, J., Mankiewicz-Boczek, J. & Sivonen, K. 2006. Detection of microcystin-producing cyanobacteria in finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. Appl. Environ. Microbiol. 72:6101-6110. https://doi.org/10.1128/AEM.01058-06
  30. Rantala-Ylinen, A., Kana, S., Wang, H., Rouhiainen, L., Wahlsten, M., Rizzi, E., Berg, K., Gugger, M. & Sivonen, K. 2011. Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl. Environ. Microbiol. 77:7271-7278. https://doi.org/10.1128/AEM.06022-11
  31. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1-61. https://doi.org/10.1099/00221287-111-1-1
  32. Roger, P. A. & Kulasooriya, A. 1980. Blue-green algae and rice. International Rice Research Institute, Manila, 112 pp.
  33. Schwartz, R. E., Hirsch, C. F., Sesin, D. F., Flor, J. E., Chartrain, M., Fromtling, R. E., Harris, G. H., Salvatore, M. J., Liesch, J. M. & Yudin, K. 1990. Pharmaceuticals from cultured algae. J. Ind. Microbiol. 5:113-124. https://doi.org/10.1007/BF01573860
  34. Sivonen, K. 2009. Cyanobacterial toxins. In Schaechter, M. (Ed.) Encyclopedia of Microbiology. Elsevier, Oxford, pp. 290-307.
  35. Smith, F. M. J., Wood, S. A., Van Ginkel, R., Broady, P. A. & Gaw, S. 2011. First report of saxitoxin production by a species of the freshwater benthic cyanobacterium, Scytonema Agardh. Toxicon 57:566-573. https://doi.org/10.1016/j.toxicon.2010.12.020
  36. Tamura, K., Dudley, J., Nei, M. & Kumar, S. 2007. MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 8:1596-1599.
  37. Vaitomaa, J., Rantala, A., Halinen, K., Rouhiainen, L., Tallberg, P., Mokelke, L. & Sivonen, K. 2003. Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Appl. Microbiol. Immunol. 12:7289-7297.

Cited by

  1. Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments vol.114, pp.1, 2014, https://doi.org/10.1093/aob/mcu085
  2. Nostoc calcicola extract improved the antioxidative response of soybean to cowpea aphid vol.58, pp.None, 2012, https://doi.org/10.1186/s40529-017-0211-9
  3. Chemical and molecular evidences for the poisoning of a duck by anatoxin-a, nodularin and cryptophycin at the coast of lake Shoormast (Mazandaran province, Iran) vol.28, pp.4, 2012, https://doi.org/10.15407/alg28.04.409
  4. Bioactive Peptides Produced by Cyanobacteria of the Genus Nostoc: A Review vol.17, pp.10, 2019, https://doi.org/10.3390/md17100561
  5. Biological activity of methanol extract from Nostoc sp. N42 and Fischerella sp. S29 isolated from aquatic and terrestrial ecosystems vol.29, pp.4, 2012, https://doi.org/10.15407/alg29.04.421
  6. Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria Desertifilum sp. extract: Their Antibacterial and Cytotoxicity Effects vol.15, pp.None, 2012, https://doi.org/10.2147/ijn.s238575
  7. Effects of Modification of Light Parameters on the Production of Cryptophycin, Cyanotoxin with Potent Anticancer Activity, in Nostoc sp. vol.12, pp.12, 2012, https://doi.org/10.3390/toxins12120809
  8. Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review vol.13, pp.5, 2021, https://doi.org/10.3390/toxins13050322
  9. Alborzia kermanshahica gen. nov., sp. nov. (Chroococcales, Cyanobacteria), isolated from paddy fields in Iran vol.71, pp.6, 2012, https://doi.org/10.1099/ijsem.0.004828
  10. Production of the neurotoxin homoanatoxin-a and detection of a biosynthetic gene cluster sequence (anaC) from an Iranian isolate of Anabaena vol.139, pp.None, 2012, https://doi.org/10.1016/j.sajb.2021.02.012
  11. Anabaenopeptins: What We Know So Far vol.13, pp.8, 2021, https://doi.org/10.3390/toxins13080522
  12. Molecular and Structural Parallels between Gluten Pathogenic Peptides and Bacterial-Derived Proteins by Bioinformatics Analysis vol.22, pp.17, 2021, https://doi.org/10.3390/ijms22179278
  13. Genome description of Nostoc ellipsosporum strain NOK (Nostocales, Cyanobacteria) isolated from an arsenic contaminated paddy field of the Bengal Delta Plains vol.2, pp.3, 2012, https://doi.org/10.1088/2633-1357/ac202f
  14. Nostocyclopeptides as New Inhibitors of 20S Proteasome vol.11, pp.10, 2012, https://doi.org/10.3390/biom11101483
  15. Peatland microhabitat heterogeneity drives phototrophic microbe distribution and photosynthetic activity vol.23, pp.11, 2012, https://doi.org/10.1111/1462-2920.15779