DOI QR코드

DOI QR Code

Isolation of a Gibberellin-producing fungus (Penicillium sp. MH7) and Growth Promotion of Crown Daisy (Chrysanthemum coronarium)

  • Hamayun, Muhammad (School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University) ;
  • Khan, Sumera Afzal (Centre of Biotechnology and Microbiology, University of Peshawar) ;
  • Iqbal, Ilyas (Department of Botany, University of Malakand) ;
  • Ahmad, Bashir (Centre of Biotechnology and Microbiology, University of Peshawar) ;
  • Lee, In-Jung (School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University)
  • Published : 2010.01.31

Abstract

Plant growth promoting fungi (PGPF) are well known for the production of useful secondary metabolites. However, limited information is available on the gibberellin (GA) production capacity of PGPF of endophytic origin. In the current study, 15 fungal endophytes were isolated from the roots of Crown daisy, and then screened on Waito-c rice, in order to identify plant growth promoting fungi. The fungal isolate MH7 significantly increased the shoot length (12.1 cm) of Waito-c in comparison with control treatment (7.9 cm). In a separate experiment, the culture filtrate (CF) of MH7 significantly promoted the growth attributes of Crown daisy. The MH7 CF was analyzed for gibberellins and it contained all physiologically active gibberellins ($GA_1$, 1.37 ng/ml; $GA_3$, 5.88 ng/ml; $GA_4$, 8.62 ng/ml; and $GA_7$, 2.05 ng/ml) in conjunction with physiologically inactive $GA_9$ (0.83 ng/ml), $GA_{12}$ (0.44 ng/ml), $GA_{15}$ (0.74 ng/ml), $GA_{19}$ (1.16 ng/ml), and $GA_{20}$ (0.98 ng/ml). The CF of MH7 produced higher amounts of $GA_3$, $GA_4$, $GA_7$, $GA_9$, and $GA_{12}$ than wild-type Fusarium fujikuroi, which was used as a control for GA production. The fungal isolate MH7 was later identified as a new strain of Penicillium on the basis of its morphological characteristics and phylogenetic analysis of the 188 rDNA sequence.

Keywords

References

  1. Alexopoulos, C., C. Mims, and M. Blackwell. 1996. Introductory Mycology. Wiley & Sons, Inc., New York.
  2. Cragg, G. M., D. J. Newman, and K. M. Snader. 1997. Natural products in drug discovery and development. J. Nat. Prod. 60: 52-60. https://doi.org/10.1021/np9604893
  3. Ellis, M. and J. P. Ellis. 1998. Microfungi on Miscellaneous Substrates. Richmond Publishing Co. Ltd., Slough.
  4. Franck, C., J. Lammertyn, and B. Nicolai. 2005. Metabolic profiling using GC-MS to study biochemical changes during long-term storage of pears. Proceedings of 5th International Postharvest Symposium, eds. F. Mencarelli and P. Tonutti. Acta Hort. 682: 1991-1998.
  5. Frisvad, J. C. and D. Filtenborg. 1989. Terverticillate penicilia: Chemotaxonomy and mycotoxin production. Mycol. 81: 837-861. https://doi.org/10.2307/3760103
  6. Hamayun, M., S. A. Khan, N. Ahmad, D. S. Tang, S. M. Kang, C. I. Na, et al. 2009. Cladosporium sphaerospermum as a new plant growth promoting endophyte from the roots of Glycine max (L.) Merr. World J. Microbiol. Biotechnol. 25: 627-632. https://doi.org/10.1007/s11274-009-9982-9
  7. Hamayun, M., S. A. Khan, H. Y. Kim, M. F. Chaudhary, Y. H. Hwang, D. H. Shin, I. K. Kim, B. H. Lee, and I. J. Lee. 2009. Gibberellin production and plant growth enhancement by newly isolated strain of Scolecobasidium tshawytschae. J. Microbiol. Biotechnol. 19: 560-565. https://doi.org/10.4014/jmb.0809.520
  8. Hasan, H. A. H. 2002. Gibberellin and auxin production plant root fungi and their biosynthesis under salinity-calcium interaction. Rostlinna Vyroba 48: 101-106.
  9. Higgs, R. E., A. Z. James, D. G. Jeffrey, and D. H. Matthew. 2001. Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl. Environ. Microbiol. 67: 371-376. https://doi.org/10.1128/AEM.67.1.371-376.2001
  10. Kawaide, H. 2006. Biochemical and molecular analysis of gibberellin biosynthesis in fungi. Biosci. Biotechnol. Biochem. 70: 583-590 https://doi.org/10.1271/bbb.70.583
  11. Khan, S. A., M. Hamayun, H. J. Yoon, H. Y. Kim, S. J. Suh, S. K. Hwang, et al. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231. https://doi.org/10.1186/1471-2180-8-231
  12. Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, I. J. Lee, and J. G. Kim. 2009. Gibberellin production and plant growth promotion by a new strain of Gliomastix murorum. World J. Microbiol. Biotechnol. 25: 829-833. https://doi.org/10.1007/s11274-009-9981-x
  13. Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, J. C. Seo, Y. S. Choo, et al. 2009. A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnol. Lett. 31: 283-287. https://doi.org/10.1007/s10529-008-9862-7
  14. Kim, K. S. and Y. S. Lee. 2000. Rapid and accurate species-specific detection of Phytophthora infestans through analysis of ITS regions in its rDNA. J. Microbiol. Biotechnol. 10: 651-655.
  15. Lee, H. G., J. Y. Lee, and D. H. Lee. 2001. Cloning and characterization of the ribosomal RNA gene from Gonyaulax polyerdra. J. Microbiol. Biotechnol. 11: 515-523.
  16. Lee, I. J., K. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011. https://doi.org/10.1104/pp.116.3.1003
  17. MacMillan, J. 2002. Occurence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Reg. 20: 387-442.
  18. Malinowski, D. P. and D. P. Belesky. 1999. Neotyphodium coenophialum-endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. J. Plant Nutr. 22: 835-853. https://doi.org/10.1080/01904169909365675
  19. Marquez, L. M., R. S. Redman, R. J. Rodriguez, and M. J. Roossinck. 2007. A virus in a fungus in a plant: Three-way symbioses required for thermal tolerance. Science 315: 513-515. https://doi.org/10.1126/science.1136237
  20. Martin, G. C. 1983. Commercial uses of gibberellins, pp. 395-444. In A. Crozier (ed.). The Biochemistry and Physiology of Gibberellins, Vol. 2. Preager, New York.
  21. Nishijima, T., M. Koshioka, H. Yamazaki, and L. N. Mander. 1995. Endogenous gibberellins and bolting in cultivars of Japanese radish. Acta Hort. 394: 199-206.
  22. O'Donnell, K., E. Cigelnik, and H. L. Nirenberg. 1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465-493. https://doi.org/10.2307/3761407
  23. Ogas, J. 2000. Gibberellins. Curr. Biol. 10: R48-R48. https://doi.org/10.1016/S0960-9822(00)00292-X
  24. Pitt, J. I. 1988. A Laboratory Guide to Common Penicillium Species. Commonwealth Scientific and Industrial Research Organization, Division of Food Processing, North Ryde, NSW.
  25. Reis, V. M., J. I. Baldani, V. L. D. Baldani, and J. Dobereiner. 2000. Biological nitrogen fixation in Gramineae and palm trees. Crit. Rev. Plant Sci. 19: 227-247. https://doi.org/10.1016/S0735-2689(00)80003-9
  26. Sugita, T. and A. Nishikawa. 2003. Fungal identification method based on DNA sequence analysis. Reassessment of the methods of the pharmaceutical society of Japan and the Japanese pharmacopoeia. J. Health Sci. 49: 531-533. https://doi.org/10.1248/jhs.49.531
  27. Takahashi, N., B. O. Phinney, and J. MacMillan. 1991. Gibberellins. Springer, New York.
  28. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  29. Vandenbussche, F., A. C. Fierro, G. Wiedemann, R. Reski, and D. Van Der Straeten. 2007. Evolutionary conservation of plant gibberellin signaling pathway components. BMC Plant Biol. 7: 65. https://doi.org/10.1186/1471-2229-7-65
  30. Waller, F., B. Achatz, H. Baltruschat, J. Fodor, K. Becker, M. Fischer, et al. 2005. The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Nat. Acad. Sci. U.S.A. 102: 13386-13391. https://doi.org/10.1073/pnas.0504423102
  31. Yamada, A., T. Ogura, Y. Degawa, and M. Ohmasa. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience 42: 43-50. https://doi.org/10.1007/BF02463974
  32. Zou, W. X. and R. X. Tan. 1999. Advances in Plant Science pp 183-190, Vol. 2 China Higher Education Press, Beijing.

Cited by

  1. Salinity Stress Resistance Offered by Endophytic Fungal Interaction Between Penicillium minioluteum LHL09 and Glycine max. L vol.21, pp.9, 2011, https://doi.org/10.4014/jmb.1103.03012
  2. Gibberellin producing Neosartorya sp. CC8 reprograms Chinese cabbage to higher growth vol.129, pp.3, 2010, https://doi.org/10.1016/j.scienta.2011.03.046
  3. Endophytes and their role in phytoremediation vol.54, pp.1, 2010, https://doi.org/10.1007/s13225-012-0165-x
  4. Postharvest quality and physiological responses of clove bud extract dip on ‘Newhall’ navel orange vol.138, pp.None, 2012, https://doi.org/10.1016/j.scienta.2012.02.036
  5. Effect of Penicillium Extractsa on Germination Vigor in Subsequent Seedling Growth of Tomato (Solanum Lycopersicum L.) vol.65, pp.1, 2010, https://doi.org/10.2478/v10129-011-0049-3
  6. Effect of Penicillium Extractsa on Germination Vigor in Subsequent Seedling Growth of Tomato (Solanum Lycopersicum L.) vol.65, pp.1, 2010, https://doi.org/10.2478/v10129-011-0049-3
  7. Season and Tissue Type Affect Fungal Endophyte Communities of the Indian Medicinal Plant Tinospora cordifolia More Strongly than Geographic Location vol.64, pp.2, 2012, https://doi.org/10.1007/s00248-012-0029-7
  8. Endophytic Fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth during Stress vol.17, pp.9, 2010, https://doi.org/10.3390/molecules170910754
  9. Isolation and Characterization of Saponin-Producing Fungal Endophytes from Aralia elata in Northeast China vol.13, pp.12, 2010, https://doi.org/10.3390/ijms131216255
  10. Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity vol.29, pp.11, 2010, https://doi.org/10.1007/s11274-013-1378-1
  11. Diversity and dynamics of fungal endophytes in leaves, stems and roots of Stellera chamaejasme L. in northwestern China vol.104, pp.6, 2010, https://doi.org/10.1007/s10482-013-0014-2
  12. Bioactive chemical constituents produced by endophytes and effects on rice plant growth vol.9, pp.1, 2014, https://doi.org/10.1080/17429145.2013.860562
  13. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture vol.62, pp.2, 2010, https://doi.org/10.1007/s13199-014-0273-3
  14. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses vol.128, pp.2, 2010, https://doi.org/10.1007/s10265-014-0688-1
  15. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach vol.108, pp.4, 2015, https://doi.org/10.1007/s10482-015-0538-8
  16. Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants and functional amino acids vol.141, pp.4, 2010, https://doi.org/10.1007/s10658-014-0581-8
  17. Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example ofPenicillium citrinumandAspergillus terreus vol.10, pp.1, 2010, https://doi.org/10.1080/17429145.2015.1079743
  18. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance vol.35, pp.1, 2010, https://doi.org/10.3109/07388551.2013.800018
  19. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta vol.5, pp.4, 2015, https://doi.org/10.3390/agriculture5040918
  20. Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea vol.43, pp.4, 2015, https://doi.org/10.5941/myco.2015.43.4.373
  21. Effect of fungal endophytes on morphological characteristics, nutrients content and longevity of plane trees (Platanus orientalisL.) vol.39, pp.8, 2010, https://doi.org/10.1080/01904167.2015.1109113
  22. Gibberellins of Endophytic and Saprotrophic Penicillium funiculosum Strains vol.79, pp.5, 2017, https://doi.org/10.15407/microbiolj79.05.057
  23. Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth vol.13, pp.1, 2010, https://doi.org/10.1080/17429145.2018.1432773
  24. Fungal Diversity and Community Composition of Culturable Fungi in Stanhopea trigrina Cast Gibberellin Producers vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.00612
  25. Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils vol.26, pp.3, 2010, https://doi.org/10.1139/er-2018-0023
  26. IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils vol.13, pp.11, 2010, https://doi.org/10.1371/journal.pone.0208150
  27. Isolation and Characterization of Endophytic Fungi from Purslane and the Effects of Isolates on the Growth of the Host vol.9, pp.5, 2010, https://doi.org/10.4236/aim.2019.95026
  28. Trichoderma reesei improved the nutrition status of wheat crop under salt stress vol.14, pp.1, 2010, https://doi.org/10.1080/17429145.2019.1684582
  29. Cinnamic acid as an inhibitor of growth, flavonoids exudation and endophytic fungus colonization in maize root vol.135, pp.None, 2010, https://doi.org/10.1016/j.plaphy.2018.11.029
  30. Diversity and Spatiotemporal Distribution of Fungal Endophytes Associated with Citrus reticulata cv. Siyahoo vol.76, pp.3, 2010, https://doi.org/10.1007/s00284-019-01632-9
  31. In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays vol.77, pp.3, 2019, https://doi.org/10.1007/s13199-018-0583-y
  32. Synthesis of Biologically Active Gibberellins GA4 and GA7 by Microorganisms vol.81, pp.2, 2019, https://doi.org/10.15407/microbiolj81.02.090
  33. Beneficial Effects of Endophytic Fungi from the Anoectochilus and Ludisia Species on the Growth and Secondary Metabolism of Anoectochilus roxburghii vol.5, pp.7, 2010, https://doi.org/10.1021/acsomega.9b03789
  34. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications vol.10, pp.3, 2010, https://doi.org/10.1007/s13205-020-2081-1
  35. Yucasin and cinnamic acid inhibit IAA and flavonoids biosynthesis minimizing interaction between maize and endophyte Aspergillus nomius vol.81, pp.2, 2020, https://doi.org/10.1007/s13199-020-00690-z
  36. Linking Endophytic Fungi to Medicinal Plants Therapeutic Activity. A Case Study on Asteraceae vol.10, pp.7, 2010, https://doi.org/10.3390/agriculture10070286
  37. The Response of the Associations of Grass and Epichloë Endophytes to the Increased Content of Heavy Metals in the Soil vol.10, pp.3, 2010, https://doi.org/10.3390/plants10030429