DOI QR코드

DOI QR Code

1H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver

  • Xu, Chuang (Department of Clinical Veterinary Medicine, Animal Science and Technology College, Heilongjiang August First Land Reclamation University) ;
  • Sun, Ling-wei (Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University) ;
  • Xia, Cheng (Department of Clinical Veterinary Medicine, Animal Science and Technology College, Heilongjiang August First Land Reclamation University) ;
  • Zhang, Hong-you (Department of Clinical Veterinary Medicine, Animal Science and Technology College, Heilongjiang August First Land Reclamation University) ;
  • Zheng, Jia-san (Department of Clinical Veterinary Medicine, Animal Science and Technology College, Heilongjiang August First Land Reclamation University) ;
  • Wang, Jun-song (Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science Technology)
  • Received : 2015.05.18
  • Accepted : 2015.08.24
  • Published : 2016.02.01

Abstract

Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using $^1H$ nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in ${\beta}$-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, ${\gamma}$-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows.

Keywords

References

  1. Crenn, P., K. Vahedi, A. Lavergne-Slove, L. Cynober, C. Matuchansky, and B. Messing. 2003. Plasma citrulline: a marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 124:1210-1219. https://doi.org/10.1016/S0016-5085(03)00170-7
  2. Dieterle F., A. Ross, G. Schlotterbeck, and H. Senn. 2006. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 78: 4281-4290. https://doi.org/10.1021/ac051632c
  3. Du Y., Q. Meng, Q. Zhang, and F. Guo. 2012. Isoleucine or valine deprivation stimulates fat loss via increasing energy expenditure and regulating lipid metabolism in WAT. Amino Acids 43:725-734. https://doi.org/10.1007/s00726-011-1123-8
  4. Faghfoury H., J. Baruteau, H. O. de Baulny, J. Haberle, and A. Schulze. 2011. Transient fulminant liver failure as an initial presentation in citrullinemia type I. Mol. Genet. Metab. 102: 413-417. https://doi.org/10.1016/j.ymgme.2010.12.007
  5. Gena, P., M. Mastrodonato, P. Portincasa, E. Fanelli, D. Mentino, A. Rodriguez, R. A. Marinelli, C. Brenner, G. Fruhbeck, M. Svelto, and G. Calamita. 2013. Liver glycerol permeability and aquaporin-9 are dysregulated in a murine model of nonalcoholic fatty liver disease. PLoS One. 8:e78139. https://doi.org/10.1371/journal.pone.0078139
  6. Gonzalez, F. D., R. Muino, V. Pereira, R. Campos, and J. L. Benedito. 2011. Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. J. Vet .Sci. 12:251-255. https://doi.org/10.4142/jvs.2011.12.3.251
  7. Haque, M. N., H. Rulquin, and S. Lemosquet. 2013. Milk protein responses in dairy cows to changes in postruminal supplies of arginine, isoleucine, and valine. J. Dairy Sci. 96:420-430. https://doi.org/10.3168/jds.2012-5610
  8. Harita, N., T. Hayashi, K. K. Sato, Y. Nakamura, T. Yoneda, G. Endo, and H. Kambe. 2009. Lower serum creatinine is a new risk factor of type 2 diabetes: the Kansai healthcare study. Diabetes Care 32:424-426. https://doi.org/10.2337/dc08-1265
  9. Herdt, T. H., L. Goeders, J. S. Liesman, and R. S. Emery. 1983. Test for estimation of bovine hepatic lipid content. J. Am. Vet. Med. Assoc. 182:953-955.
  10. Laffel, L. 1999. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab. Res. Rev. 15: 412-426. https://doi.org/10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8
  11. Jorritsma R., H. Jorritsma, Y. H. Schukken, and G. H. Wentink. 2000. Relationships between fatty liver and fertility and some periparturient diseases in commercial Dutch dairy herds. Theriogenology 54:1065-1074. https://doi.org/10.1016/S0093-691X(00)00415-5
  12. Hayirli, A., R. R. Grummer, E. V. Nordheim, and P. M. Crump. 2002. Animal and dietary factors affecting feed intake during the prefresh transition period in Holsteins. J. Dairy Sci. 85:3430-3443. https://doi.org/10.3168/jds.S0022-0302(02)74431-7
  13. Koeth, R. A., Z. Wang, B. S. Levison, J. A. Buffa, E. Org, B. T. Sheehy, E. B. Britt, X. Fu, Y. Wu, L. Li, J. D. Smith, J. A. DiDonato, J. Chen, H. Li, G. D. Wu, J. D. Lewis, M. Warrier, J. M. Brown, R. M. Krauss, W. H. Tang, F. D. Bushman, A. J. Lusis, and S. L. Hazen. 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19:576-585. https://doi.org/10.1038/nm.3145
  14. Moyes, K. M., E. Bendixen, M. C. Codrea, and K. L. Ingvartsen. 2013. Identification of hepatic biomarkers for physiological imbalance of dairy cows in early and mid lactation using proteomic technology. J. Dairy Sci. 96:3599-3610. https://doi.org/10.3168/jds.2012-5900
  15. Mukherjee, S., S. K. Das, K. Vaidyanathan, and D. M. Vasudevan. 2008. Consequences of alcohol consumption on neurotransmitters -An overview. Curr. Neurovascular Res. 5:266-272. https://doi.org/10.2174/156720208786413415
  16. Mukherjee, S., K. Vaidyanathan, D. M. Vasudevan, and S. K. Das. 2010. Role of plasma amino acids and gaba in alcoholic and non-alcoholic fatty liver disease-a pilot study. Indian J. Clin. Biochem. 25:37-42. https://doi.org/10.1007/s12291-010-0007-0
  17. Ning, M., L. M. Lowenstein, and C. S. Davidson. 1967. Serum amino acid concentrations in alcoholic hepatitis. J. Lab. Clin. Med. 70:554-562.
  18. Oikawa, S., Y. Mizunuma, Y. Iwasaki, and M. Tharwat. 2010. Changes of very low-density lipoprotein concentration in hepatic blood from cows with fasting-induced hepatic lipidosis. Can. J. Vet. Res. 74:317-320.
  19. Patterson, M. C. 2005. Metabolic mimics: The disorders of Nlinked glycosylation. Semin. Pediatr. Neurol. 12:144-151. https://doi.org/10.1016/j.spen.2005.10.002
  20. Sejersen, H., M. T. Sorensen, T. Larsen, E. Bendixen, and K. L. Ingvartsen. 2012. Liver protein expression in dairy cows with high liver triglycerides in early lactation. J. Dairy Sci. 95: 2409-2421. https://doi.org/10.3168/jds.2011-4604
  21. Shemesh, O., H. Golbetz, J. P. Kriss, and B. D. Myers. 1985. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 28:830-838. https://doi.org/10.1038/ki.1985.205
  22. Smith, T. R., A. R. Hippen, D. C. Beitz, and J. W. Young. 1997. Metabolic characteristics of induced ketosis in normal and obese dairy cows. J. Dairy Sci. 80:1569-1581. https://doi.org/10.3168/jds.S0022-0302(97)76087-9
  23. Song, X. F., J. S. Wang, P. R. Wang, N. Tian, M. H. Yang, and L. Y. Kong. 2013. 1H NMR-based metabolomics approach to evaluate the effect of Xue-Fu-Zhu-Yu decoction on hyperlipidemia rats induced by high-fat diet. J. Pharm. Biomed. Anal. 78:202-210.
  24. Sun, L. W., H. Y. Zhang, L. Wu, S. Shu, C. Xia, C. Xu, and J. S. Zheng. 2014. 1H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis. J. Dairy Sci. 97:1552-1562. https://doi.org/10.3168/jds.2013-6757
  25. Takahashi, Y., S. Koyama, H. Tanaka, S. Arawaka, M. Wada, T. Kawanami, H. Haga, H. Watanabe, K. Toyota, C. Numakura, K. Hayasaka, and T. Kato. 2012. An elderly Japanese patient with adult-onset type II citrullinemia with a novel D493G mutation in the SLC25A13 gene. Intern. Med. 51:2131-2134. https://doi.org/10.2169/internalmedicine.51.7644
  26. Wildman, E. E., G. M. Jones, P. E. Wagner, R. L. Boman, H. F. Troutt Jr, and T. N. Lesch. 1982. A dairy cow body condition scoring system and its relationship to selected production characteristics. J. Dairy Sci. 65:495-501. https://doi.org/10.3168/jds.S0022-0302(82)82223-6
  27. Wu, G., B. Imhoff-Kunsch, and A. W. Girard. 2012. Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr. Perinat. Epidemiol. 26:4-26. https://doi.org/10.1111/j.1365-3016.2012.01291.x
  28. Xu, C., Z. Wang, G. W. Liu, X. B. Li, G. H. Xie, C. Xia, and H. Y. Zhang. 2008. Metabolic characteristic of the liver of dairy cows during ketosis based on comparative proteomics. Asian Australas. J. Anim. Sci. 21:1003-1010. https://doi.org/10.5713/ajas.2008.70392
  29. Zhang, H. Y., L. Wu, C. Xu, C. Xia, L. W. Sun, and S. Shu. 2013. Plasma metabolomic profiling of dairy cows affected with ketosis using gas chromatography/mass spectrometry. BMC Vet. Res. 9:186. https://doi.org/10.1186/1746-6148-9-186
  30. Zhao, X. J., C. Huang, H. Lei, X. Nie, H. Tang, and Y. Wang. 2011. Dynamic metabolic response of mice to acute mequindox exposure. J. Proteome Res. 10:5183-5190. https://doi.org/10.1021/pr2006457

Cited by

  1. Nuclear magnetic resonance-based serum metabolic profiling of dairy cows with footrot vol.78, pp.9, 2016, https://doi.org/10.1292/jvms.15-0720
  2. Effects of Boron Supplementation on Peripartum Dairy Cows’ Health vol.179, pp.2, 2017, https://doi.org/10.1007/s12011-017-0971-9
  3. H NMR plasma metabolomic profiling of ovarian quiescence in energy balanced postpartum dairy cows pp.1875-5941, 2018, https://doi.org/10.1080/01652176.2018.1473660
  4. Effects of abomasal infusions of fatty acids and one-carbon donors on hepatic ceramide and phosphatidylcholine in lactating Holstein dairy cows vol.102, pp.8, 2019, https://doi.org/10.3168/jds.2018-16200
  5. Lipid Accumulation and Injury in Primary Calf Hepatocytes Challenged With Different Long-Chain Fatty Acids vol.7, pp.None, 2016, https://doi.org/10.3389/fvets.2020.547047
  6. A Tale of Two Biomarkers: Untargeted 1 H NMR Metabolomic Fingerprinting of BHBA and NEFA in Early Lactation Dairy Cows vol.10, pp.6, 2016, https://doi.org/10.3390/metabo10060247
  7. Effects of different fatty acids on BRL3A rat liver cell damage vol.235, pp.9, 2020, https://doi.org/10.1002/jcp.29553
  8. Metabolomics comparison of rumen fluid and milk in dairy cattle using proton nuclear magnetic resonance spectroscopy vol.34, pp.2, 2021, https://doi.org/10.5713/ajas.20.0197
  9. Aspects of transition cow metabolomics—Part III: Alterations in the metabolome of liver and blood throughout the transition period in cows with different liver metabotypes vol.104, pp.8, 2016, https://doi.org/10.3168/jds.2020-19056